22 research outputs found

    Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells.

    Get PDF
    IntroductionThe purpose of this study is to identify target proteins that may play important functional roles in oral cancer stem-like cells (CSCs) using mass spectrometry-based quantitative proteomics.MethodsSphere-formation assays were performed on highly invasive UM1 and lowly invasive UM2 oral cancer cell lines, which were derived from the same tongue squamous cell carcinoma, to enrich CSCs. Quantitative proteomic analysis of CSC-like and non-CSC UM1 cells was carried out using tandem mass tagging and two-dimensional liquid chromatography with Orbitrap mass spectrometry.ResultsCSC-like cancer cells were found to be present in the highly invasive UM1 cell line but absent in the lowly invasive UM2 cell line. Stem cell markers SOX2, OCT4, SOX9 and CD44 were up-regulated, whereas HIF-1 alpha and PGK-1 were down-regulated in CSC-like UM1 cells versus non-CSC UM1 cells. Quantitative proteomic analysis indicated that many proteins in cell cycle, metabolism, G protein signal transduction, translational elongation, development, and RNA splicing pathways were differentially expressed between the two cell phenotypes. Both CREB-1-binding protein (CBP) and phosphorylated CREB-1 were found to be significantly over-expressed in CSC-like UM1 cells.ConclusionsCSC-like cells can be enriched from the highly invasive UM1 oral cancer cell line but not from the lowly invasive UM2 oral cancer cell line. There are significant proteomic alterations between CSC-like and non-CSC UM1 cells. In particular, CBP and phosphorylated CREB-1 were significantly up-regulated in CSC-like UM1 cells versus non-CSC UM1 cells, suggesting that the CREB pathway is activated in the CSC-like cells

    Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells

    Get PDF
    INTRODUCTION: The purpose of this study is to identify target proteins that may play important functional roles in oral cancer stem-like cells (CSCs) using mass spectrometry-based quantitative proteomics. METHODS: Sphere-formation assays were performed on highly invasive UM1 and lowly invasive UM2 oral cancer cell lines, which were derived from the same tongue squamous cell carcinoma, to enrich CSCs. Quantitative proteomic analysis of CSC-like and non-CSC UM1 cells was carried out using tandem mass tagging and two-dimensional liquid chromatography with Orbitrap mass spectrometry. RESULTS: CSC-like cancer cells were found to be present in the highly invasive UM1 cell line but absent in the lowly invasive UM2 cell line. Stem cell markers SOX2, OCT4, SOX9 and CD44 were up-regulated, whereas HIF-1 alpha and PGK-1 were down-regulated in CSC-like UM1 cells versus non-CSC UM1 cells. Quantitative proteomic analysis indicated that many proteins in cell cycle, metabolism, G protein signal transduction, translational elongation, development, and RNA splicing pathways were differentially expressed between the two cell phenotypes. Both CREB-1-binding protein (CBP) and phosphorylated CREB-1 were found to be significantly over-expressed in CSC-like UM1 cells. CONCLUSIONS: CSC-like cells can be enriched from the highly invasive UM1 oral cancer cell line but not from the lowly invasive UM2 oral cancer cell line. There are significant proteomic alterations between CSC-like and non-CSC UM1 cells. In particular, CBP and phosphorylated CREB-1 were significantly up-regulated in CSC-like UM1 cells versus non-CSC UM1 cells, suggesting that the CREB pathway is activated in the CSC-like cells

    The Expression Levels of XLF and Mutant P53 Are Inversely Correlated in Head and Neck Cancer Cells.

    Get PDF
    XRCC4-like factor (XLF), also known as Cernunnos, is a protein encoded by the human NHEJ1 gene and an important repair factor for DNA double-strand breaks. In this study, we have found that XLF is over-expressed in HPV(+) versus HPV(-) head and neck squamous cell carcinoma (HNSCC) and significantly down-regulated in the HNSCC cell lines expressing high level of mutant p53 protein versus those cell lines harboring wild-type TP53 gene with low p53 protein expression. We have also demonstrated that Werner syndrome protein (WRN), a member of the NHEJ repair pathway, binds to both mutant p53 protein and NHEJ1 gene promoter, and siRNA knockdown of WRN leads to the inhibition of XLF expression in the HNSCC cells. Collectively, these findings suggest that WRN and p53 are involved in the regulation of XLF expression and the activity of WRN might be affected by mutant p53 protein in the HNSCC cells with aberrant TP53 gene mutations, due to the interaction of mutant p53 with WRN. As a result, the expression of XLF in these cancer cells is significantly suppressed. Our study also suggests that XLF is over-expressed in HPV(+) HNSCC with low expression of wild type p53, and might serve as a potential biomarker for HPV(+) HNSCC. Further studies are warranted to investigate the mechanisms underlying the interactive role of WRN and XLF in NHEJ repair pathway

    Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes.

    Get PDF
    BackgroundCancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes.MethodsUM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test.ResultsDespite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2.ConclusionsOur results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

    Polar Cyclone Identification from 4D Climate Data in a Knowledge-Driven Visualization System

    No full text
    Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes pressure level data and velocity field is proposed to improve the identification accuracy. In addition, the dynamic, simulative cyclone visualized with a 4D (four-dimensional) wind field further validated the identification result. A knowledge-driven system is eventually constructed for visualizing and analyzing an atmospheric phenomenon (cyclone) in the North Pole. The cyclone is simulated with WebGL on in a web environment using particle tracing. To achieve interactive frame rates, the graphics processing unit (GPU) is used to accelerate the process of particle advection. It is concluded with the experimental results that: (1) the cyclone identification accuracy of the proposed method is 95.6% when compared with the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data; (2) the integrated knowledge-driven visualization system allows for streaming and rendering of millions of particles with an interactive frame rate to support knowledge discovery in the complex climate system of the Arctic region

    Association Rules-Based Multivariate Analysis and Visualization of Spatiotemporal Climate Data

    No full text
    Understanding atmospheric phenomena involves analysis of large-scale spatiotemporal multivariate data. The complexity and heterogeneity of such data pose a significant challenge in discovering and understanding the association between multiple climate variables. To tackle this challenge, we present an interactive heuristic visualization system that supports climate scientists and the public in their exploration and analysis of atmospheric phenomena of interest. Three techniques are introduced: (1) web-based spatiotemporal climate data visualization; (2) multiview and multivariate scientific data analysis; and (3) data mining-enabled visual analytics. The Arctic System Reanalysis (ASR) data are used to demonstrate and validate the effectiveness and usefulness of our method through a case study of “The Great Arctic Cyclone of 2012”. The results show that different variables have strong associations near the polar cyclone area. This work also provides techniques for identifying multivariate correlation and for better understanding the driving factors of climate phenomena

    Integrated Omics Analysis of Sjogren’s Syndrome

    No full text
    Sjögren's syndrome (SS) is a chronic autoimmune disorder clinically characterized by dry mouth and eyes. The pathogenic mechanism of SS is inadequately understood and a long delay from the start of the symptoms to final diagnosis has been frequently observed. In this paper, we aim to provide an overview about using omics technologies to discover biomarkers for SS diagnosis and understand potential pathways underlying SS pathogenesis. Omics databases relevant to SS such as Sjögren’s Syndrome Knowledge Base,  Saliva Ontology and SDxMart are also discussed

    MiR-195-5p suppresses gastric adenocarcinoma cell progression via targeting OTX1

    No full text
    Gastric adenocarcinoma (GAC) caused by malignant transformation of gastric adenocytes is a malignancy with high incidence. MiR-195-5p modulates a variety of cancers. One of its target genes, orthodenticle homeobox 1 (OTX1), is believed to be a key modulator of tumor progression. We aim to analyze the mechanism of miR-195-5p and OTX1 in GAC. MiR195-5p and OTX1 mRNA levels in GAC cells were tested via qRT-PCR. OTX1 protein and EMT-related protein levels were examined through western blot. Several cell functional assays were designed to measure changes in cell malignant behaviors. Dual luciferase assay verified the targeting relation of miR-195-5p and OTX1. These experimental results showed significantly low miR-195-5p expression and significantly high OTX1 expression in GAC cells. Enforced miR-195-5p level repressed cell malignant progression and accelerated cell apoptosis in GAC. Increased OTX1 weakened the above-mentioned effect caused by overexpressing miR-195-5p. Thus, miR-195-5p restrained migration, proliferation, invasion and epithelial-mesenchymal transition process of GAC cells, and promoted cell apoptosis through regulating OTX1. A new insight is provided for searching for biomarkers or therapeutic targets of GAC
    corecore