28 research outputs found

    LaunchpadGPT: Language Model as Music Visualization Designer on Launchpad

    Full text link
    Launchpad is a musical instrument that allows users to create and perform music by pressing illuminated buttons. To assist and inspire the design of the Launchpad light effect, and provide a more accessible approach for beginners to create music visualization with this instrument, we proposed the LaunchpadGPT model to generate music visualization designs on Launchpad automatically. Based on the language model with excellent generation ability, our proposed LaunchpadGPT takes an audio piece of music as input and outputs the lighting effects of Launchpad-playing in the form of a video (Launchpad-playing video). We collect Launchpad-playing videos and process them to obtain music and corresponding video frame of Launchpad-playing as prompt-completion pairs, to train the language model. The experiment result shows the proposed method can create better music visualization than random generation methods and hold the potential for a broader range of music visualization applications. Our code is available at https://github.com/yunlong10/LaunchpadGPT/.Comment: Accepted by International Computer Music Conference (ICMC) 202

    Association of left ventricular ejection fraction with worsening renal function in patients with acute heart failure:insights from the RELAX-AHF-2 study

    Get PDF
    Aims: Whether risk of worsening renal function (WRF) during acute heart failure (AHF) hospitalization or the association between in-hospital WRF and post-discharge outcomes vary according to left ventricular ejection fraction (LVEF) is uncertain. We assessed incidence of WRF, factors related to its development and impact of WRF on post-discharge outcomes across the spectrum of LVEF in patients enrolled in RELAX-AHF-2. Methods and results: A total of 6112 patients who had LVEF measured on admission and renal function determined prospectively during hospitalization were included. WRF, defined as a rise in serum creatinine ≥0.3 mg/dL from baseline through day 5, occurred in 1722 patients (28.2%). Incidence increased progressively from lowest to highest LVEF quartile (P 50%) remained significantly greater than in Q1 (LVEF ≤29%; hazard ratio 1.2, 95% confidence interval 1–1.43; P = 0.050). Age and comorbidity burden including chronic kidney disease increased as LVEF increased. Neither admission haemodynamic abnormalities, extent of diuresis during hospitalization nor residual congestion explained the increased incidence of WRF in patients with higher LVEF. Serelaxin treatment and diuretic responsiveness were associated with reduced risk of WRF in all LVEF quartiles. WRF in patients in the upper three LVEF quartiles increased risk of post-discharge events. Conclusions: Worsening renal function incidence during AHF hospitalization increases progressively with LVEF. Greater susceptibility of patients with higher LVEF to WRF appears more related to their advanced age and worse underlying kidney function rather than haemodynamic or treatment effects. WRF is associated with increased risk of post-discharge events except in patients in the lowest LVEF quartile

    Peliminary exploration on the differential diagnosis between meningioma and schwannoma using contrast-enhanced T1WI flow-sensitive black-blood sequence

    Get PDF
    IntroductionContrast-enhanced T1WI flow-sensitive black-blood (CE-T1WI FSBB) is a newly developed sequence which had not been widely used for differential diagnosis of brain tumors.MethodsTo quantify the pre-operative imaging features of intratumoral microbleeds and intratumoral vessels using CE-T1WI FSBB scan and study the differences in biological behavior of meningiomas and schwannomas underlying the imaging features. Seventy-three cases of meningiomas and 24 cases of schwannomas confirmed by postoperative pathology were included. Two neuroradiologists independently counted intratumoral vessels and intratumoral microbleeds based on CE-T1WI FSBB images. The vessel density index (VDI) and microbleed density index (MDI) were the number of intratumoral vessels and the number of intratumoral microbleeds divided by the tumor volume, respectively. The consistency test of intratumoral vessel count and intratumoral microbleed count based on CE-T1WI FSBB were summarized using 2-way random intraclass correlation coefficients (ICC). Mann–Whitney U-test and chi-square test were used to determine significant differences between meningiomas and schwannomas, and fibrous meningiomas and epithelial meningiomas. P<0.05 was considered statistically significant.ResultsThe ICC of intratumoral vessels count and intratumoral microbleeds count were 0.89 and 0.99, respectively. There were significant differences in the number of intratumoral microbleeds (P<0.01) and MDI values (P<0.01) between meningiomas and schwannomas. There were no differences in the number of intratumoral vessels (P=0.64), VDI (P=0.17), or tumor volume (P=0.33). There were also differences in the number of intratumoral microbleeds (P<0.01), the MDI value (P<0.01), and the sex of patients (P<0.05) between fibrous meningiomas and epithelial meningiomas.DiscussionCE-T1WI FSBB can be a new technique for differentiating schwannomas from meningiomas, and even different types of meningiomas. Schwannomas have a higher incidence of intratumoral hemorrhage, more intratumoral microbleeds, and higher MDI values than meningiomas, which provides a new basis for preoperative differential diagnosis and treatment decisions

    Integrated Proteomic and Transcriptomic Analysis Reveals Long Noncoding RNA HOX Transcript Antisense Intergenic RNA (HOTAIR) Promotes Hepatocellular Carcinoma Cell Proliferation by Regulating Opioid Growth Factor Receptor (OGFr)

    No full text
    Long noncoding RNA HOX transcript antisense RNA (HOTAIR) is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HOTAIR functions in HCC are largely unknown. Here, we employed an integrated transcriptomic and quantitative proteomic analysis to systematically explore the regulatory role of HOTAIR in HCC. A total of 673 transcripts and 293 proteins were found to be dysregulated after HOTAIR inhibition. Bioinformatics studies indicated that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) are involved in many biological processes, especially cancer-related signaling pathways. A set of DEGs and DEPs were validated by quantitative RT-PCR, Western blot and parallel reaction monitoring (PRM) analysis, respectively. Further functional studies of the opioid growth factor receptor (OGFr), a negative biological regulator of cell proliferation in HCC, revealed that HOTAIR exerts its effects on cell proliferation, at least in part, through the regulation of OGFr expression. By correlating the omics data with functional studies, the current results provide novel insights into the functional mechanisms of HOTAIR in HCC cells.</p

    The circular RNA CDR1as regulate cell proliferation via TMED2 and TMED10

    No full text
    AbstractBackgroundCircular RNAs (CircRNAs) are biologically active RNAs. CDR1as is one such circRNA previously reported to be a microRNA-7 (miR-7) sponge, thereby regulating associated gene expression. The specific underlying molecular mechanisms of CDR1as biology, however, remain largely unknown.MethodsWe performed CDR1as knockdown in order to explore its function in cell proliferation, migration, the cell cycle, and tumorigenesis. We further employed quantitative proteomic analyses and associated bioinformatics strategies to globally assess CDR1as-regulated proteins (CRPs). Western blotting and immunofluorescence staining were used to validate the proteomic results. We additionally investigated a specific link between TMED2, TMED10, and miR-7 via a dual-luciferase reporter system, and generated CDR1as knockout cell lines via CRISPR/Cas9 editing.ResultsWe identified 353 proteins dysregulated upon CDR1as knockdown in 293?T cells. These CRPs were found to interact with one another and to play key roles in certain cellular pathways. Two such proteins, TMED2 and TMED10, were found to specifically contribute to the influence of CDR1as on cell proliferation. CDR1as may regulate these two TMED proteins through miR-7 sponging. We were able to further confirm these results using both CRISPRi cell lines and nude mouse models.ConclusionThis study suggested that CDR1as may regulate cell proliferation via serving as a miR-7 sponge, thereby regulating TMED2 and TMED10 expression. These results are an invaluable template for future streamlined studies of circRNAs

    Quantitative Proteomics Reveals the Regulatory Networks of Circular RNA CDR1as in Hepatocellular Carcinoma Cells

    No full text
    Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins

    Quantitative Proteomics Reveals the Regulatory Networks of Circular RNA CDR1as in Hepatocellular Carcinoma Cells

    No full text
    Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins

    Quantitative Proteomics Reveals the Regulatory Networks of Circular RNA CDR1as in Hepatocellular Carcinoma Cells

    No full text
    Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins

    Global Phosphoproteomic Analysis Reveals the Involvement of Phosphorylation in Aflatoxins Biosynthesis in the Pathogenic Fungus Aspergillus flavus

    No full text
    Aspergillus flavus is a pathogenic fungus that produces toxic and carcinogenic aflatoxins and is the causative agent of aflatoxicosis. A growing body of evidence indicates that reversible phosphorylation plays important roles in regulating diverse functions in this pathogen. However, only a few phosphoproteins of this fungus have been identified, which hampers our understanding of the roles of phosphorylation in A. flavus. So we performed a global and site-specific phosphoproteomic analysis of A. flavus. A total of 598 high-confidence phosphorylation sites were identified in 283 phosphoproteins. The identified phosphoproteins were involved in various biological processes, including signal transduction and aflatoxins biosynthesis. Five identified phosphoproteins associated with MAPK signal transduction and aflatoxins biosynthesis were validated by immunoblotting using phospho-specific antibodies. Further functional studies revealed that phosphorylation of the MAP kinase kinase kinase Ste11 affected aflatoxins biosynthesis in A. flavus. Our data represent the results of the first global survey of protein phosphorylation in A. flavus and reveal previously unappreciated roles for phosphorylation in the regulation of aflatoxins production. The generated dataset can serve as an important resource for the functional analysis of protein phosphorylation in A. flavus and facilitate the elucidation of phosphorylated signaling networks in this pathogen

    Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells

    No full text
    Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmuno­precipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1–129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis
    corecore