33 research outputs found

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Molecular identification of Physalis species (Solanaceae) using a candidate DNA barcode: the chloroplast psbA–trnH intergenic region

    No full text
    Physalis L., an important genus of the family Solanaceae, includes many commercially important edible and medicinal species. Traditionally, species identification is based on morphological traits; however, the highly similar morphological traits among Physalis species make this approach difficult. In this study, we evaluated the feasibility of using a popular DNA barcode, the chloroplast psbA–trnH intergenic region, in the identification of Physalis species. Thirty-six psbA–trnH regions of Physalis species and of the closely related plant Nicandra physalodes were analyzed. The success rates of PCR amplification and sequencing of the psbA–trnH region were 100%. MEGA V6.0 was utilized to align the psbA–trnH sequences and to compute genetic distances. The results show an apparent barcoding gap between intra- and inter-specific variations. Results of both BLAST1 and nearest-distance methods prove that the psbA–trnH regions can be used to identify all species examined in the present study. In addition, phylogenetic analysis using psbA–trnH data revealed a distinct boundary between species. It also confirmed the relationship between Physalis species and closely related species, as established by previous studies. In conclusion, the psbA–trnH intergenic region can be used as an efficient DNA barcode for the identification of Physalis species.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study

    No full text
    The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae). For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium

    Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study

    Get PDF
    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources

    Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae

    No full text
    Physalis angulata var. villosa, rich in withanolides, has been used as a traditional Chinese medicine for many years. To date, few extensive molecular studies of this plant have been conducted. In the present study, the plastome of P. angulata var. villosa was sequenced, characterized and compared with that of other Physalis species, and a phylogenetic analysis was conducted in the family Solanaceae. The plastome of P. angulata var. villosa was 156,898 bp in length with a GC content of 37.52%, and exhibited a quadripartite structure typical of land plants, consisting of a large single-copy (LSC, 87,108 bp) region, a small single-copy (SSC, 18,462 bp) region and a pair of inverted repeats (IR: IRA and IRB, 25,664 bp each). The plastome contained 131 genes, of which 114 were unique and 17 were duplicated in IR regions. The genome consisted of 85 protein-coding genes, eight rRNA genes and 38 tRNA genes. A total of 38 long, repeat sequences of three types were identified in the plastome, of which forward repeats had the highest frequency. Simple sequence repeats (SSRs) analysis revealed a total of 57 SSRs, of which the T mononucleotide constituted the majority, with most of SSRs being located in the intergenic spacer regions. Comparative genomic analysis among nine Physalis species revealed that the single-copy regions were less conserved than the pair of inverted repeats, with most of the variation being found in the intergenic spacer regions rather than in the coding regions. Phylogenetic analysis indicated a close relationship between Physalis and Withania. In addition, Iochroma, Dunalia, Saracha and Eriolarynx were paraphyletic, and clustered together in the phylogenetic tree. Our study published the first sequence and assembly of the plastome of P. angulata var. villosa, reported its basic resources for evolutionary studies and provided an important tool for evaluating the phylogenetic relationship within the family Solanaceae

    Development and Application of a Cultivar-Specific Sequence-Characterized Amplified Region (SCAR) Marker for the Detection of Chrysanthemum morifolium Ramat. ‘Daboju’

    No full text
    Chrysanthemummorifolium Ramat. ‘Daboju’ is a C. morifolium cultivar with important ornamental and medicinal values, and is often used in the treatment of colds, blurred vision, dizziness, and itchy skin. As the morphological characteristics of C. morifolium ‘Daboju’ are very similar to those of other C. morifolium cultivars, they are often confused in practice. However, the medicinal value and practical use of C. morifolium depends on using the correct rapid and accurate identification of C. morifolium ‘Daboju’ and its differentiation from other, morphologically similar C. × morifolium cultivars. Twenty-one polymorphic start codon-targeted (SCoT) primers were amplified in 21 distinct C. morifolium cultivars. One cultivar-specific DNA marker was developed with the aim of the rapid and accurate identification of C. morifolium ‘Daboju’ and its differentiation from other, similar C. morifolium cultivars. Twenty-one polymorphic start codon-targeted (SCoT) primers were amplified in 21 distinct C. morifolium cultivars. One cultivar-specific 385-bp amplicon (named SCoT36-385), amplified only in C. morifolium ‘Daboju’ (and in all samples of this cultivar), was identified, cloned, and sequenced. Subsequently, a sequence-characterized amplified region (SCAR) marker (named DBJF/DBJR), generating a 360-bp amplicon, was developed from SCoT36-385 and tested for amplification in all 21 C. morifolium cultivars, ten C. morifolium ‘Daboju’ populations, and different simulated adulterations of ‘Daboju’ with other cultivars. The primers amplified the specific 360-bp-long DNA fragment in all the tested C. morifolium ‘Daboju’ samples but failed in the absence of ‘Daboju’. The detection limit of the SCAR primer pair (DBJF/DBJR) was 100 pg of DNA extracted from C. morifolium ‘Daboju’. Hence, this SCAR marker has a very high detection sensitivity, and can be used for accurate and rapid identification of C. morifolium ‘Daboju’. It can play an important role in ensuring the quality of medicinal preparations and protecting C. morifolium ‘Daboju’ germplasm resources in breeding programs and in identifying lines generated from this cultivar

    High-Density Genetic Map Construction and Stem Total Polysaccharide Content-Related QTL Exploration for Chinese Endemic Dendrobium (Orchidaceae)

    No full text
    Plants of the Dendrobium genus are orchids with not only ornamental value but also high medicinal value. To understand the genetic basis of variations in active ingredients of the stem total polysaccharide contents (STPCs) among different Dendrobium species, it is of paramount importance to understand the mechanism of STPC formation and identify genes affecting its process at the whole genome level. Here, we report the first high-density single-nucleotide polymorphism (SNP) integrated genetic map with a good genome coverage of Dendrobium. The specific-locus amplified fragment sequencing (SLAF-seq) technology led to identification of 7,013,400 SNPs from 1,503,626 high-quality SLAF markers from two parents (Dendrobium moniliforme ♀ × Dendrobium officinale ♂) and their interspecific F1 hybrid population. The final genetic map contained 8, 573 SLAF markers, covering 19 linkage groups (LGs). This genetic map spanned a length of 2,737.49 cM, where the average distance between markers is 0.32 cM. In total, 5 quantitative trait loci (QTL) related to STPC were identified, 3 of which have candidate genes within the confidence intervals of these stable QTLs based on the D. officinale genome sequence. This study will build a foundation up for the mapping of other medicinal-related traits and provide an important reference for the molecular breeding of these Chinese herb

    Development of Chloroplast Microsatellite Markers and Evaluation of Genetic Diversity and Population Structure of Cutleaf Groundcherry (<i>Physalis angulata</i> L.) in China

    No full text
    Cutleaf groundcherry (Physalis angulata L.), an annual plant containing a variety of active ingredients, has great medicinal value. However, studies on the genetic diversity and population structure of P. angulata are limited. In this study, we developed chloroplast microsatellite (cpSSR) markers and applied them to evaluate the genetic diversity and population structure of P. angulata. A total of 57 cpSSRs were identified from the chloroplast genome of P. angulata. Among all cpSSR loci, mononucleotide markers were the most abundant (68.24%), followed by tetranucleotide (12.28%), dinucleotide (10.53%), and trinucleotide (8.77%) markers. In total, 30 newly developed cpSSR markers with rich polymorphism and good stability were selected for further genetic diversity and population structure analyses. These cpSSRs amplified a total of 156 alleles, 132 (84.62%) of which were polymorphic. The percentage of polymorphic alleles and the average polymorphic information content (PIC) value of the cpSSRs were 81.29% and 0.830, respectively. Population genetic diversity analysis indicated that the average observed number of alleles (Na), number of effective alleles (He), Nei’s gene diversity (h), and Shannon information indices (I) of 16 P. angulata populations were 1.3161, 1.1754, 0.1023, and 0.1538, respectively. Moreover, unweighted group arithmetic mean, neighbor-joining, principal coordinate, and STRUCTURE analyses indicated that 203 P. angulata individuals from 16 populations were grouped into four clusters. A molecular variance analysis (AMOVA) illustrated the considerable genetic variation among populations, while the gene flow (Nm) value (0.2324) indicated a low level of gene flow among populations. Our study not only provided a batch of efficient genetic markers for research on P. angulata but also laid an important foundation for the protection and genetic breeding of P. angulata resources

    The Complete Chloroplast Genomes of Two <i>Physalis</i> Species, <i>Physalis macrophysa</i> and <i>P. ixocarpa</i>: Comparative Genomics, Evolutionary Dynamics and Phylogenetic Relationships

    No full text
    Physalis macrophysa (PMA) and Physalis ixocarpa (PIX) have significant economic, medicinal, and ornamental value and are often used in the fields of edible fruits, medicinal herbs, and ornamental plants. In the present study, we obtained the complete chloroplast (cp) genome sequences of PMA and PIX, compared to the cp genome sequences of 10 Physalis species, and constructed the phylogenetic tree among the tribe Physaleae. The results showed that the cp genomes of PMA and PIX consisted of a large single copy (LSC) region (87,115 bp and 87,103 bp, respectively), a small single copy (SSC) region (18,412 bp and 18,420 bp, respectively), and a pair of same-length inverted-repeat (IRa and IRb) regions (25,604 bp and 25,674 bp, respectively). The two species contained 132 genes, including 87 encoding proteins, eight encoding ribosomal RNAs (rRNAs), and 37 encoding transfer RNAs (tRNAs), which indicated that the two species have strong similarities with respect to genome structure and gene content. PMA and PIX contained repeat sequences (35 and 40, respectively) and simple-sequence repeats (SSRs) (61 and 60, respectively). Nine regions with considerable nucleotide divergence were found, most of which were located in the LSC and SSC regions. The gene selective pressure analysis indicated that eight genes were affected by positive selection, the Ka/Ks values of which were greater than one. Our phylogenetic results indicated that PMA and PIX had the closest genetic relationship and are closely adjacent to Physalis philadelphica (PPH) in the subtribe Physalinae. Our analysis of the cp genomes in both Physalis species will be beneficial for further research into species identification, phylogeny, evolution, and the potential for germplasm resource exploitation in Physalis
    corecore