54 research outputs found

    Women's Vulnerability and State Responsibility in China's Family-Planning Policy

    Get PDF
    Women’s fertility vulnerability is a pervasive social issue that requires efforts from multiple government departments and social groups to solve. However, China has traditionally focused on the reproduction function of the family and marginalized women's reproductive autonomy and related rights. Based on the overview of the existing literature, we have a better understanding of the fertility experience of Chinese women when facing the fertility policy, focusing on their continued harm, neglect and vulnerability during the process of changes in the fertility policy. The vulnerability of Chinese women to fertility is caused by women’s socio-economic status, the concept of marriage and childbirth in society, the control of the family planning policy. We suggest the amendment of the family-planning policy should be accompanied by a series of arrangements for family support, such as establishing a reproduction-friendly environment, promoting social gender consciousness in all aspects, reducing women's household burden, and actively eliminating gender discrimination in the workplace. Keywords: family planning, women, vulnerability, civil law, family support DOI: 10.7176/JLPG/110-09 Publication date:June 30th 202

    Observations of Forbush Decreases of Cosmic-Ray Electrons and Positrons with the Dark Matter Particle Explorer

    Get PDF
    The Forbush decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections or high-speed streams from coronal holes. It has been mainly explored with the ground-based neutron monitor network, which indirectly measures the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmospheric atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relatively small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic-ray electrons and positrons have just been investigated by the PAMELA experiment in the low-energy range (<5 GeV) with limited statistics. In this paper, we study the FD event that occurred in 2017 September with the electron and positron data recorded by the Dark Matter Particle Explorer. The evolution of the FDs from 2 GeV to 20 GeV with a time resolution of 6 hr are given. We observe two solar energetic particle events in the time profile of the intensity of cosmic rays, the earlier, and weaker, one has not been shown in the neutron monitor data. Furthermore, both the amplitude and recovery time of fluxes of electrons and positrons show clear energy dependence, which is important in probing the disturbances of the interplanetary environment by the coronal mass ejections

    Machine learning methods for helium flux analysis with DAMPE experiment

    Get PDF
    DAMPE is a space-borne experiment for the measurement of the cosmic-ray fluxes at energies up to around 100 TeV per nucleon. At energies above several tens of TeV, the electronics of DAMPE calorimeter would saturate, leaving certain bars with no energy recorded. It is also observed that at high energies the tracker and the scintillator detector that serve for the charge identification become heavily populated with back-splash tracks. Both effects interfere in precise measurements of the helium flux at highest energies. In the present contribution we discuss the application of machine learning techniques for the treatment of DAMPE data, to compensate the calorimeter energy lost by saturation and to identify helium events

    The Time Course of the Influence of Valence and Arousal on the Implicit Processing of Affective Pictures

    Get PDF
    In the current study, we investigated the time course of the implicit processing of affective pictures with an orthogonal design of valence (negative vs. positive) by arousal (low vs. high). Previous studies with explicit tasks suggested that valence mainly modulates early event-related potential (ERP) components, whereas arousal mainly modulates late components. However, in this study with an implicit task, we observed significant interactions between valence and arousal at both early and late stages over both parietal and frontal sites, which were reflected by three different ERP components: P2a (100–200 ms), N2 (200–300 ms), and P3 (300–400 ms). Furthermore, there was also a significant main effect of arousal on P2b (200–300 ms) over parieto-occipital sites. Our results suggest that valence and arousal effects on implicit affective processing are more complicated than previous ERP studies with explicit tasks have revealed

    Measurement of the light component (p+He) energy spectrum with the DAMPE space mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE) is a space-based particle detector launched in a Sun- synchronous orbit on December 17th, 2015 from the Jiuquan Satellite Launch Center, in China. It has been taking data very smoothly for more than 5 years. Science goals of the DAMPE mission include the study of the electron-positron energy spectrum, the study of galactic cosmic-rays, gamma-ray astronomy, and indirect dark matter search. Performing precise measurements of light elements in space, the most abundant components of cosmic radiation, is necessary to address major problems in galactic cosmic ray acceleration and propagation mechanisms. Selecting a combined proton and helium sample (instead of proton or helium alone) allows larger efficiency and purity, also minimizing systematic effects in the reconstruction of the energy spectrum, due to possible cross-contaminations. The use of looser analysis cuts allows collecting larger statistics thus extending the covered energy range and providing a link between direct and indirect cosmic- ray measurements. The measurement of the p+He energy spectrum up to ∼ 150 TeV will be presented, along with a discussion on the features of the spectrum and a comparison with other experimental results

    Search for gamma-ray lines in the Galaxy with DAMPE

    Get PDF
    DArk Matter Particle Explorer (DAMPE) has a great potential in the search of monochromatic and sharp gamma-ray structures in GeV-TeV range thanks to its good energy resolution. In this work, we search for gamma-ray line structures using 5.0 years of DAMPE data. To improve the sensitivity, we develop two types of data sets and adopt the signal-to-noise ratio optimized regions of interest (ROIs) for different DM density profiles. No line signals or candidates, including those located at 133 GeV and 43 GeV, are found between 10 GeV and 300 GeV in the Galaxy. Therefore we calculate the 95% confidence level constraints on the velocity-averaged cross section for χχ → γγ and the decay lifetime for χ → γν with systematic uncertainties included. Our constraints on DM parameters are mostly comparable to the Fermi-LAT 5.8-yr results. The lower limit for DM decay lifetime below 100 GeV are better than that of Fermi-LAT

    Charge measurement of cosmic rays by Plastic Scintillator Detector of DAMPE

    Get PDF
    Plastic Scintillator Detector (PSD) of DArk Matter Particle Explorer (DAMPE) is designed to measure the charge of cosmic-rays and it servers as a veto for gamma-rays. In this work, we present some updated correction methods to further improve the quality of PSD charge measurement, especially for heavy nuclei. DAMPE has collected nearly 10 billions events by middle of 2021, it has substantial potential to measure the spectra of cosmic ray nuclei up to hundreds of TeV energies. These measurements could largely benefit from the correction of the PSD signal

    Direct Measurement of the Cosmic-Ray Iron Spectrum with the Dark Matter Particle Explorer

    Get PDF
    Dark Matter Particle Explorer(DAMPE) is a calorimetric-type, satellite-borne detector for observations of high energy electrons, gamma-rays, and cosmic-ray nuclei. Using five years data collected with DAMPE from January 1, 2016 to December 31, 2020, we analyzed the spectrum of iron. Detailed studies of the fragmentation of iron in the detector have been performed using Monte Carlo simulations

    Analyzing the Fermi Bubbles with DArk Matter Particle Explorer

    Get PDF
    The Fermi bubbles are two large structures above and below the Galactic Plane. They are first discovered by Fermi-LAT and thought to be related to the jet or the wind from the Galactic center. The DArk Matter Particle Explorer (DAMPE) is a space-borne high energy particle telescope aiming at measuring cosmic rays and photons in a broad energy range. In this work, we use 4.8 years of DAMPE photon data to search for the emission from the Fermi Bubbles. We calculate the TS values of the lobes and the significance of its curved spectrum. The obtained spectral parameters are then compared with those from the Fermi-LAT. We also search for the emission from the cocoon in the southeast part of lobes. Since the Galactic diffuse emission (GDE) model is a major source of systematic uncertainty, we also switch to the GDE models calculated with Galprop and evaluate the influence

    Simulation of the DAMPE detector

    Get PDF
    Extensive Monte Carlo (MC) simulations are essential in understanding the detector’s response for high energy particle detection experiments. We present the infrastructure and status of MC simulations of the DArk Matter Particle Explorer (DAMPE), a satellite project for the direct detection of high-energy cosmic rays and gamma rays. The DAMPE simulation tool employs two widely used softwares, GEANT4 and FLUKA, which implement various physics lists to simulate the interactions of particles in the detector. The framework of the simulation tool, the production farms, the data-MC comparison, and the performance of MC simulations on the analysis are summarized
    • …
    corecore