694 research outputs found

    Multi-seeded melt growth (MSMG) of bulk Y-Ba-Cu-O using thin-film seeds

    Full text link
    Y-Ba-Cu-O (YBCO) and Sm-Ba-Cu-O (SmBCO) thin films have been used for the first time as heterogeneous seeds to multi-seed successfully the melt growth of bulk YBCO in a multi-seeded melt growth (MSMG) process. The use of thin film seeds, which may be prepared with highly controlled orientation (i.e. with a well-defined a-b plane and precisely known a-direction), is based on their superheating properties and reduces significantly contamination of the bulk sample by the seed material. A variety of grain boundaries were obtained by varying the angle between the seeds. Microstructural studies indicate that the extent of residual melt deposited at the grain boundary decreases with increasing grain boundary contact angle. It is established that the growth front proceeds continuously at the (110)/(110) grain boundary without trapping liquid, which leads to the formation of a clean grain boundary

    Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    Get PDF
    The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al

    Combination of photothermal, prodrug and tumor cell camouflage technologies for triple-negative breast cancer treatment

    Get PDF
    Triple-negative breast cancer (TNBC) remains the most challenging breast cancer subtype. In the presented work, we have combined several emerging technologies to build up a nanoplatform for TNBC treatment: photothermal therapy, prodrug design and tumor cell camouflage formulation. First, we synthesized a paclitaxel (PTX) based prodrug PTX-SS, and then conjugated it to the surface of gold nanorod (Au NR) @ mesoporous silica (MSN) core-shell nanoparticles (Au@MSN-NH2 NPs). Subsequently, doxorubicin (DOX) was loaded into the Au@PTXSS-MSN NPs and further coated with cell membranes isolated from MDA-MB-231 cells to form cell camouflaged Au@PTXSS-MSN/DOX@CM NPs. The Au@PTXSS-MSN/DOX@CM NPs exhibited very good DOX loading capacity and the prodrug strategy enabled the precise adjustability of PTX-SS loading to achieve the optimized ratio between PTX and DOX to maximize the synergistic effect of these two drugs, as well as enabled GSH-responsive intracellular drug release. More interestingly, the cell membrane coating not only protected the drug from premature release, but also significantly improved the targeting ability of NPs to breast cancer MDA-MB-231 cells. The NPs also showed good photothermal responsiveness with clear improvement in inhibiting MDA-MB231 cell proliferation under laser irradiation. The in vivo studies further confirmed the effectiveness of Au@PTXSS-MSN/DOX@CM NPs on TNBC tumor inhibition in 4T1 cell grafted tumor mice model. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Nucleus-targeted Dmp1 transgene fails to rescue dental defects in Dmp1 null mice

    Get PDF
    Dentin matrix protein 1 (DMP1) is essential to odontogenesis. Its mutations in human subjects lead to dental problems such as dental deformities, hypomineralization and periodontal impairment. Primarily, DMP1 is considered as an extracellular matrix protein that promotes hydroxyapatite formation and activates intracellular signaling pathway via interacting with αvβ3 integrin. Recent in vitro studies suggested that DMP1 might also act as a transcription factor. In this study, we examined whether full-length DMP1 could function as a transcription factor in the nucleus and regulate odontogenesis in vivo. We first demonstrated that a patient with the DMP1 M1V mutation, which presumably causes a loss of the secretory DMP1 but does not affect the nuclear translocation of DMP1, shows a typical rachitic tooth defect. Furthermore, we generated transgenic mice expressing (NLS)DMP1, in which the endoplasmic reticulum (ER) entry signal sequence of DMP1 was replaced by a nuclear localization signal (NLS) sequence, under the control of a 3.6 kb rat type I collagen promoter plus a 1.6 kb intron 1. We then crossbred the (NLS)DMP1 transgenic mice with Dmp1 null mice to express the (NLS)DMP1 in Dmp1-deficient genetic background. Although immunohistochemistry demonstrated that (NLS)DMP1 was localized in the nuclei of the preodontoblasts and odontoblasts, the histological, morphological and biochemical analyses showed that it failed to rescue the dental and periodontal defects as well as the delayed tooth eruption in Dmp1 null mice. These data suggest that the full-length DMP1 plays no apparent role in the nucleus during odontogenesis

    The genomic features that affect the lengths of 5’ untranslated regions in multicellular eukaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lengths of 5’UTRs of multicellular eukaryotes have been suggested to be subject to stochastic changes, with upstream start codons (uAUGs) as the major constraint to suppress 5’UTR elongation. However, this stochastic model cannot fully explain the variations in 5’UTR length. We hypothesize that the selection pressure on a combination of genomic features is also important for 5’UTR evolution. The ignorance of these features may have limited the explanatory power of the stochastic model. Furthermore, different selective constraints between vertebrates and invertebrates may lead to differences in the determinants of 5’UTR length, which have not been systematically analyzed.</p> <p>Methods</p> <p>Here we use a multiple linear regression model to delineate the correlation between 5’UTR length and the combination of a series of genomic features (G+C content, observed-to-expected (OE) ratios of uAUGs, upstream stop codons (uSTOPs), methylation-related CG/UG dinucleotides, and mRNA-destabilizing UU/UA dinucleotides) in six vertebrates (human, mouse, rat, chicken, African clawed frog, and zebrafish) and four invertebrates (fruit fly, mosquito, sea squirt, and nematode). The relative contributions of each feature to the variation of 5’UTR length were also evaluated.</p> <p>Results</p> <p>We found that 14%~33% of the 5’UTR length variations can be explained by a linear combination of the analyzed genomic features. The most important genomic features are the OE ratios of uSTOPs and G+C content. The surprisingly large weightings of uSTOPs highlight the importance of selection on upstream open reading frames (which include both uAUGs and uSTOPs), rather than on uAUGs <it>per se</it>. Furthermore, G+C content is the most important determinants for most invertebrates, but for vertebrates its effect is second to uSTOPs. We also found that shorter 5’UTRs are affected more by the stochastic process, whereas longer 5’UTRs are affected more by selection pressure on genomic features.</p> <p>Conclusions</p> <p>Our results suggest that upstream open reading frames may be the real target of selection, rather than uAUGs. We also show that the selective constraints on genomic features of 5’UTRs differ between vertebrates and invertebrates, and between longer and shorter 5’UTRs. A more comprehensive model that takes these findings into consideration is needed to better explain 5’UTR length evolution.</p

    Greening China naturally

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO: A Journal of the Human Environment 40 (2011): 828-831, doi:10.1007/s13280-011-0150-8.China leads the world in afforestation, and is one of the few countries whose forested area is increasing. However, this massive ‘‘greening’’ effort has been less effective than expected; afforestation has sometimes produced unintended environmental, ecological, and socioeconomic consequences, and has failed to achieve the desired ecological benefits. Where afforestation has succeeded, the approach was tailored to local environmental conditions. Using the right plant species or species composition for the site and considering alternatives such as grassland restoration have been important success factors. To expand this success, government policy should shift from a forest-based approach to a results-based approach. In addition, long-term monitoring must be implemented to provide the data needed to develop a cost-effective, scientifically informed restoration policy.This work was supported by the Fundamental Research Funds for the Central Universities (HJ2010-3) and the CAS/ SAFEA International Partnership Program for Creative Research Teams of ‘‘Ecosystem Processes and Services’’

    Dephosphorylated NSSR1 Is Induced by Androgen in Mouse Epididymis and Phosphorylated NSSR1 Is Increased during Sperm Maturation

    Get PDF
    NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Identification of Autotoxic Compounds in Fibrous Roots of Rehmannia (Rehmannia glutinosa Libosch.)

    Get PDF
    Rehmannia is a medicinal plant in China. Autotoxicity has been reported to be one of the major problems hindering the consecutive monoculture of Rehmannia. However, potential autotoxins produced by the fibrous roots are less known. In this study, the autotoxicity of these fibrous roots was investigated. Four groups of autotoxic compounds from the aqueous extracts of the fibrous roots were isolated and characterized. The ethyl acetate extracts of these water-soluble compounds were further analyzed and separated into five fractions. Among them, the most autotoxic fraction (Fr 3) was subjected to GC/MS analysis, resulting in 32 identified compounds. Based on literature, nine compounds were selected for testing their autotoxic effects on radicle growth. Seven out of the nine compounds were phenolic, which significantly reduced radicle growth in a concentration-dependent manner. The other two were aliphatic compounds that showed a moderate inhibition effect at three concentrations. Concentration of these compounds in soil samples was determined by HPLC. Furthermore, the autotoxic compounds were also found in the top soil of the commercially cultivated Rehmannia fields. It appears that a close link exists between the autotoxic effects on the seedlings and the compounds extracted from fibrous roots of Rehmannia
    corecore