1,030 research outputs found

    Confluence of Constraints in Gauge Mediation: The 125 GeV Higgs Boson and Goldilocks Cosmology

    Full text link
    Recent indications of a 125 GeV Higgs boson are challenging for gauge-mediated supersymmetry breaking (GMSB), since radiative contributions to the Higgs boson mass are not enhanced by significant stop mixing. This challenge should not be considered in isolation, however, as GMSB also generically suffers from two other problems: unsuppressed electric dipole moments and the absence of an attractive dark matter candidate. We show that all of these problems may be simultaneously solved by considering heavy superpartners, without extra fields or modified cosmology. Multi-TeV sfermions suppress the EDMs and raise the Higgs mass, and the dark matter problem is solved by Goldilocks cosmology, in which TeV neutralinos decay to GeV gravitinos that are simultaneously light enough to solve the flavor problem and heavy enough to be all of dark matter. The implications for collider searches and direct and indirect dark matter detection are sobering, but EDMs are expected near their current bounds, and the resulting non-thermal gravitino dark matter is necessarily warm, with testable cosmological implications.Comment: pdflatex, 15 pages, 11 figure

    Halo Shape and Relic Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses

    Full text link
    Dark matter with Sommerfeld-enhanced annihilation has been proposed to explain observed cosmic ray positron excesses in the 10 GeV to TeV energy range. We show that the required enhancement implies thermal relic densities that are too small to be all of dark matter. We also show that the dark matter is sufficiently self-interacting that observations of elliptical galactic dark matter halos exclude large Sommerfeld enhancement for light force carriers. Resonant Sommerfeld enhancement does not modify these conclusions, and the astrophysical boosts required to resolve these discrepancies are disfavored, especially when significant self-interactions suppress halo substructure.Comment: 4 pages, discussion and references added, published versio

    Hidden Charged Dark Matter

    Full text link
    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact U(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ~ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV < m_X < 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches.Comment: 29 pages; v2: references added; v3: published versio

    Checkerboard charge density wave and pseudogap in high-TcT_{c} cuprates

    Full text link
    We consider the scenario where a 4-lattice constant, rotationally symmetric charge density wave (CDW) is present in the underdoped cuprates. We prove a theorem that puts strong constraint on the possible form factor of such a CDW. We demonstrate, within mean-field theory, that a particular form factor within the allowed class describes the angle-resolved photoemission and scan tunneling spectroscopy well. We conjecture that the ``large pseudogap'' in cuprates is the consequence of this type of charge density wave.Comment: We add a new section II on the symmetry property of the checkerboard CD

    Sommerfeld Enhancements for Thermal Relic Dark Matter

    Full text link
    The annihilation cross section of thermal relic dark matter determines both its relic density and indirect detection signals. We determine how large indirect signals may be in scenarios with Sommerfeld-enhanced annihilation, subject to the constraint that the dark matter has the correct relic density. This work refines our previous analysis through detailed treatments of resonant Sommerfeld enhancement and the effect of Sommerfeld enhancement on freeze out. Sommerfeld enhancements raise many interesting issues in the freeze out calculation, and we find that the cutoff of resonant enhancement, the equilibration of force carriers, the temperature of kinetic decoupling, and the efficiency of self-interactions for preserving thermal velocity distributions all play a role. These effects may have striking consequences; for example, for resonantly-enhanced Sommerfeld annihilation, dark matter freezes out but may then chemically recouple, implying highly suppressed indirect signals, in contrast to naive expectations. In the minimal scenario with standard astrophysical assumptions, and tuning all parameters to maximize the signal, we find that, for force-carrier mass m_phi = 250 MeV and dark matter masses m_X = 0.1, 0.3, and 1 TeV, the maximal Sommerfeld enhancement factors are S_eff = 7, 30, and 90, respectively. Such boosts are too small to explain both the PAMELA and Fermi excesses. Non-minimal models may require smaller boosts, but the bounds on S_eff could also be more stringent, and dedicated freeze out analyses are required. For concreteness, we focus on 4 mu final states, but we also discuss 4 e and other modes, deviations from standard astrophysical assumptions and non-minimal particle physics models, and we outline the steps required to determine if such considerations may lead to a self-consistent explanation of the PAMELA or Fermi excesses.Comment: 31 pages, published versio

    Analytical solutions to the spin-1 Bose-Einstein condensates

    Full text link
    We analytically solve the one-dimensional coupled Gross-Pitaevskii equations which govern the motion of F=1 spinor Bose-Einstein condensates. The nonlinear density-density interactions are decoupled by making use of the unique properties of the Jacobian elliptical functions. Several types of complex stationary solutions are deduced. Furthermore, exact non-stationary solutions to the time-dependent Gross-Pitaevskii equations are constructed by making use of the spin-rotational symmetry of the Hamiltonian. The spin-polarizations exhibit kinked configurations. Our method is applicable to other coupled nonlinear systems.Comment: 12 figure

    Quantum Trajectory Approach to Molecular Dynamics Simulation with Surface Hopping

    Full text link
    The powerful molecular dynamics (MD) simulation is basically based on a picture that the atoms experience classical-like trajectories under the exertion of classical force field determined by the quantum mechanically solved electronic state. In this work we propose a quantum trajectory approach to the MD simulation with surface hopping, from an insight that an effective "observation" is actually implied in theMDsimulation through tracking the forces experienced, just like checking the meter's result in the quantum measurement process. This treatment can build the nonadiabatic surface hopping on a dynamical foundation, instead of the usual artificial and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.Comment: 6 pages, 3 figure
    • …
    corecore