72 research outputs found
Assessing disruption of longitudinal connectivity on macroinvertebrate assemblages in a semiarid lowland river
Impact of chloride and strong ion difference on ICU and hospital mortality in a mixed intensive care population
BACKGROUND: Abnormal chloride levels are commonly observed in critically ill patients, but their clinical relevance remains a matter of debate. We examined the association between abnormal chloremia and ICU and hospital mortality. To further refine findings and integrate them into the ongoing discussion on the detrimental effects of chloride-rich solutions, the impact of strong ion difference (SID) on the same end points was assessed. METHODS: Retrospective cohort study in an academic tertiary intensive care unit on 8830 adult patients who stayed at least 24 h in the ICU was carried out. Patients admitted after elective cardiac surgery were treated as a separate subgroup (n = 2350). Analyses were performed using multivariable logistic regression. All statistical models were extensively adjusted for confounders, including comorbidity, admission diagnosis, other electrolytes and acid–base parameters. RESULTS: Severe hyperchloremia (>110 mmol/L), but not low (SID) was significantly associated with increased mortality in the ICU (odds ratio vs. normochloremia 1.81; 95 % CI 1.32–2.50; p < 0.001) and the hospital (odds ratio 1.49; 95 % CI 1.14–1.96; p = 0.003). Hyperchloremia and low (SID) were encountered in the majority of patients admitted after cardiac surgery (in 86.9 and 47.2 %, respectively), but were not negatively associated with mortality. CONCLUSIONS: In the ICU, hyperchloremia at admission was associated with negative outcome. On the other hand, decreased strong ion difference did not have an impact on mortality, precluding a simple extrapolation of these findings to the ongoing discussion on the detrimental effects of chloride-rich solutions. This notion is fueled by the finding that hyperchloremia after cardiac surgery, frequently encountered and probably fluid-induced, did not seem to be deleterious. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13613-016-0193-x) contains supplementary material, which is available to authorized users
Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C
Studie über die Biosynthese der Citronensäure II. Stoffe, welche das Auskeimen der Sporen des Pilzes Aspergillus niger im angesäuerten Melassesubstrat inhibieren
- …
