26 research outputs found

    Maf1, a New Player in the Regulation of Human RNA Polymerase III Transcription

    Get PDF
    BACKGROUND: Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the α-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. CONCLUSIONS/SIGNIFICANCE: These data suggest that Maf1 is a major regulator of pol III transcription in human cells

    Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas

    Get PDF
    RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut

    Non-coding RNA production by RNA polymerase III is implicated in cancer

    No full text
    RNA polymerase III (Pol III) makes a variety of small non-coding RNAs, such as tRNA and 5S ribosomal RNA. Increased expression of pol III products is often observed in transformed cells. Much progress has been made in determining how Pol III-dependent transcription is regulated and how it increases in cancers, but the importance of this increase has not been clearly established. New evidence suggests that Pol III output can substantially affect transformation

    Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis

    No full text
    RNA polymerase III (Pol III) transcribes medium-sized non-coding RNAs (collectively termed Pol III genes). Emerging diverse roles of Pol III genes suggest that individual Pol III genes are exquisitely regulated by transcription and epigenetic factors. Here we report global Pol III expression/methylation profiles and molecular mechanisms of Pol III regulation that have not been as extensively studied, using nc886 as a representative Pol III gene. In a human mammary epithelial cell system that recapitulates early breast tumorigenesis, the fraction of actively transcribed Pol III genes increases reaching a plateau during immortalization. Hyper-methylation of Pol III genes inhibits Pol III binding to DNA via inducing repressed chromatin and is a determinant for the Pol III repertoire. When Pol III genes are hypo-methylated, MYC amplifies their transcription, regardless of its recognition DNA motif. Thus, Pol III expression during tumorigenesis is delineated by methylation and magnified by MYC

    RNA polymerases I and III, growth control and cancer

    No full text

    Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia

    Get PDF
    Deregulation of the miR-15a/16-1 cluster has a key role in the pathogenesis of chronic lymphocytic leukemia (CLL), a clinically heterogeneous disease with indolent and aggressive forms. The miR-15a/16-1 locus is located at 13q14, the most frequently deleted region in CLL. Starting from functional investigations of a rare SNP upstream the miR cluster, we identified a novel allele-specific mechanism that exploits a cryptic activator region to recruit the RNA polymerase III for miR-15a/16-1 transcription. This regulation of the miR-15a/16- locus is independent of the DLEU2 host gene, which is often transcribed monoallellically by RPII. We found that normally one allele of miR-15a/16-1 is transcribed by RNAPII, the other one by RNAPIII. In our subset of CLL patients harboring 13q14 deletions, exclusive RNA polymerase III (RPIII)-driven transcription of the miR-15a/16-1 was the consequence of loss of the RPII-regulated allele and correlated with high expression of the poor prognostic marker ZAP70 (P=0.019). Thus, our findings point to a novel biological process, characterized by double allele-specific transcriptional regulation of the miR-15a/16-1 locus by alternative mechanisms. Differential usage of these mechanisms may distinguish at onset aggressive from indolent forms of CLL. This provides a basis for the clinical heterogeneity of the CLL patients carrying 13q14 deletions
    corecore