11 research outputs found

    Entwicklung eines Fahrradfahrsimulators zur Verkehrserziehung und zum Verkehrssicherheitstraining fĂĽr verschiedene Altersklassen

    Get PDF
    Ziel des hier beschriebenen Forschungsprojekts war die Entwicklung eines prototypischen Fahrradfahrsimulators für den Einsatz in der Verkehrserziehung und im Verkehrssicherheitstraining. Der entwickelte Prototyp soll möglichst universell für verschiedene Altersklassen und Applikationen einsetzbar sowie mobil sein.The objective of the research project described here was to develop a bicycle simulator prototype to be used in road traffic education and road safety training. The prototype had to be universally applicable for different age groups as well as for various applications

    Gender bias in the influence of gravity on perception

    No full text
    Females are influenced more than males by visual cues during many spatial orientation tasks; but females rely more heavily on gravitational cues during visual-vestibular conflict. Are there gender biases in the relative contributions of vision, gravity and the internal representation of the body to the perception of upright? And might any such biases be affected by low gravity? 16 participants (8 female) viewed a highly polarized visual scene tilted ±112° while lying supine on the European Space Agency's short-arm human centrifuge. The centrifuge was rotated to simulate 24 logarithmically spaced g-levels along the long axis of the body (0.04-0.5g at ear-level). The perception of upright was measured using the Oriented Character Recognition Test (OCHART). OCHART uses the ambiguous symbol "p" shown in different orientations. Participants decided whether it was a "p" or a "d" from which the perceptual upright (PU) can be calculated for each visual/gravity combination. The relative contribution of vision, gravity and the internal representation of the body were then calculated. Experiments were repeated while upright. The relative contribution of vision on the PU was less in females compared to males (t=-18.48, p≤0.01). Females placed more emphasis on the gravity cue instead (f:28.4%, m:24.9%) while body weightings were constant (f:63.0%, m:63.2%). When upright (1g) in this and other studies (e.g., Barnett-Cowan et al. 2010, EJN, 31,1899) females placed more emphasis on vision in this task than males. The reduction in weight allocated by females to vision when in simulated low-gravity conditions compared to when upright under normal gravity may be related to similar female behaviour in response to other instances of visual-vestibular conflict. Why this is the case and at which point the perceptual change happens requires further research. Meeting abstract presented at VSS 201

    Sex bias in the influence of gravity on perception

    No full text
    INTRO Females are influenced more than males by visual cues during many spatial orientation tasks; but females rely more heavily on gravitational cues during visual-vestibular conflict. Are there gender biases in the relative contributions of vision, gravity and the internal representation of the body to the perception of upright? And might any such biases be affected by low gravity? METHODS 16 participants (8 female) viewed a highly polarized visual scene tilted ±112° while lying supine on the European Space Agency’s short-arm human centrifuge. The centrifuge was rotated to simulate 24 logarithmically spaced g-levels along the long axis of the body (0.04-0.5g at ear-level). The perception of upright was measured using the Oriented Character Recognition Test (OCHART). OCHART uses the ambiguous symbol “p“ shown in different orientations. Participants decided whether it was a “p“ or a “d“ from which the perceptual upright (PU) can be calculated for each visual/gravity combination. The relative contribution of vision, gravity and the internal representation of the body were then calculated. Experiments were repeated while upright. RESULTS The relative contribution of vision on the PU was less in females compared to males (t=-18.48, p≤0.01). Females placed more emphasis on the gravity cue instead (f:28.4%, m:24.9%) while body weightings were constant (f:63.0%, m:63.2%). When upright (1g) in this and other studies (e.g., Barnett-Cowan et al. 2010, EJN, 31,1899) females placed more emphasis on vision in this task. CONCLUSIONS The shift in weight allocated by females to vision when in simulated low-gravity conditions, may be related to females’ response to other instances of visual-vestibular conflict. Why this is the case and at which point the perceptual change happens requires further research

    Untersuchung der Selbstorientierung bei veränderten Gravitationsbedingungen (kurz: SelfOG)

    No full text
    Die Wahrnehmung des perzeptionellen Aufrecht (perceptual upright, PU) variiert in Abhängigkeit der Gewichtung verschiedener gravitationsbezogener und körperbasierter Merkmale zwischen Kontexten und aufgrund individueller Unterschiede. Ziel des Vorhabens war es, systematisch zu untersuchen, welche Zusammenhänge zwischen visuellen und gravitationsbedingten Merkmalen bestehen. Das Vorhaben baute auf vorangegangen Untersuchungen auf, deren Ergebnisse indizieren, dass eine Gravitation von ca. 0,15g notwendig ist, um effiziente Selbstorientierungsinformationen bereit zu stellen (Herpers et. al, 2015; Harris et. al, 2014). In dem hier beschriebenen Vorhaben wurden nun gezielt künstliche Gravitationsbedingungen berücksichtigt, um die Gravitationsschwelle, ab der ein wahrnehmbarer Einfluss beobachtbar ist, genauer zu quantifizieren bzw. die oben genannte Hypothese zu bestätigen. Es konnte gezeigt werden, dass die zentripetale Kraft, die auf einer rotierenden Zentrifuge entlang der Längsachse des Körpers wirkt, genauso efektiv wie Stehen mit normaler Schwerkraft ist, um das Gefühl des perzeptionellen Aufrechts auszulösen. Die erzielten Daten deuten zudem darauf hin, dass ein Gravitationsfeld von mindestens 0,15 g notwendig ist, um eine efektive Orientierungsinformation für die Wahrnehmung von Aufrecht zu liefern. Dies entspricht in etwa der Gravitationskraft von 0,17 g, die auf dem Mond besteht. Für eine lineare Beschleunigung des Körpers liegt der vestibulare Schwellenwert bei etwa 0,1 m/s2 und somit liegt der Wert für die Situation auf dem Mond von 1,6 m/s2 deutlich über diesem Schwellenwert.Perception of upright (PU) varies depending on the weighting of diferent gravitational and physical factors, between contexts and due to individual diferences. The aim of the project was to systematically investigate the relationships between visual and gravitational features. The project was based on previous studies, the results of which indicate that a gravitation of about 0.15g is necessary to provide eicient self-orientation information (Herpers et. al, 2015; Harris et. al, 2014). In the project described here, artificial gravitational conditions were specifically taken into account in order to quantify the gravitational threshold above which a perceptible influence can be observed more precisely or to confirm the above hypothesis. It could be shown that the centripetal force acting on a rotating centrifuge along the longitudinal axis of the body is as efective as standing with normal gravity to trigger the feeling of the perceptual upright. The data also suggest that a gravitational field of at least 0.15g is necessary to provide efective orientation information for the perception of upright, which is close to the gravitational force found on the Moon of 0.17g. For whole-body linear acceleration, the vestibular threshold is around 0.1m/s2 and so the lunar value of 1.6m/s2 is clearly well above threshold

    Gender bias in the influence of gravity on perception

    No full text
    Females are influenced more than males by visual cues during many spatial orientation tasks; but females rely more heavily on gravitational cues during visual-vestibular conflict. Are there gender biases in the relative contributions of vision, gravity and the internal representation of the body to the perception of upright? And might any such biases be affected by low gravity? 16 participants (8 female) viewed a highly polarized visual scene tilted ±112° while lying supine on the European Space Agency's short-arm human centrifuge. The centrifuge was rotated to simulate 24 logarithmically spaced g-levels along the long axis of the body (0.04-0.5g at ear-level). The perception of upright was measured using the Oriented Character Recognition Test (OCHART). OCHART uses the ambiguous symbol "p" shown in different orientations. Participants decided whether it was a "p" or a "d" from which the perceptual upright (PU) can be calculated for each visual/gravity combination. The relative contribution of vision, gravity and the internal representation of the body were then calculated. Experiments were repeated while upright. The relative contribution of vision on the PU was less in females compared to males (t=-18.48, p≤0.01). Females placed more emphasis on the gravity cue instead (f:28.4%, m:24.9%) while body weightings were constant (f:63.0%, m:63.2%). When upright (1g) in this and other studies (e.g., Barnett-Cowan et al. 2010, EJN, 31,1899) females placed more emphasis on vision in this task than males. The reduction in weight allocated by females to vision when in simulated low-gravity conditions compared to when upright under normal gravity may be related to similar female behaviour in response to other instances of visual-vestibular conflict. Why this is the case and at which point the perceptual change happens requires further research. Meeting abstract presented at VSS 201
    corecore