4 research outputs found

    Improvised Centrifugal Spinning for the Production of Polystyrene Microfibers From Waste Expanded Polystyrene Foam and Its Potential Application for Oil Adsorption

    Get PDF
    A straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the same time, energy dispersive X-ray spectroscopy revealed the presence of carbon and oxygen as the primary components of the fibers. Contact angle (θCA) measurements showed the more enhanced hydrophobicity of the PS microfiber (θCA = 100.2 ± 1.3°) compared to the untreated EPS foam (θCA = 92.9 ± 3.5°). The PS microfiber also displayed better oleophilicity compared to EPS foam. Finally, the fabricated PS microfibers demonstrated promising potential for oil removal in water with a calculated sorption capacity value of about 15.5 g/g even at a very short contact time. The fabricated PS fiber from the waste EPS foam may provide valuable insights into the valorization of polymeric waste materials for environmental and other related applications

    Detecting mercury ions in water using a low-cost colorimetric sensor derived from immobilized silver nanoparticles on a paper substrate

    No full text
    The exceptional and specific reactivity of mercury ions (Hg2+) toward plasmonic silver nanoparticles (AgNPs) in aqueous media has motivated the need to develop innovative, low-cost, portable, and robust sensors to help address the detrimental effects of heavy metal contamination particularly in rural communities. In this paper, we present the plasmonic and colorimetric sensing of Hg2+ using a paper-based sensing material derived from thiamine-functionalized (ThAgNPs) that were immobilized on a commercial filter paper. Plasmonic AgNPs with a surface plasmon resonance peak at 420 nm and a size of about 21.3 nm were synthesized by a chemical reduction technique. Fourier transform infrared spectroscopy revealed the characteristic functional groups of thiamine in the spectra of AgNPs, thereby confirming the functionalization of AgNPs. The successful integration of ThAgNPs onto the Whatman filter paper (WFP) matrix was confirmed by the UV–vis and SEM-EDX results. An evident color change from yellowish to white was manifested by the fabricated WFP-ThAgNP sensor in the presence of Hg2+ with an appreciable detection of up to 0.5 µM using the naked eye. The colorimetric response of the sensor was also found to be selective towards Hg2+ after testing with different metal ions. Moreover, the response was consistent for tap, and creek water samples spiked with Hg2+. The results of this work provide a promising baseline technology for the development of an affordable, fast, portable, and reliable sensor that can be used for on-site detection and monitoring of Hg2+ levels in the water
    corecore