976 research outputs found

    Climate change : a response surface study of the effects of CO2 and temperature on the growth of French beans

    Get PDF
    The possible impact of global rises in atmospheric CO2 concentration and temperature on the growth and development of French beans (Phaseolus vulgaris) was examined using growth cabinets. Five CO2 concentrations of 350, 450, 550, 650 and 750 vpm and five temperatures of 14·5, 15·5, 16·5, 17·5 and 18·5°C were tested using a fractional factorial design comprising nine treatment combinations of the two factors. Plants were grown under constant irradiance, common atmospheric humidities (vpd 0·5 kPa) and non-limiting supplies of water and mineral nutrients. The plant growth response was modelled by fitting polynomial response function curves to the times to first flower opening, first bean set, 50% maturity and the number and yield of beans. The effects of temperature were large and positive for most of the measured variables, whereas the effects of CO2 were small and negative or non-existent. Increased temperature substantially reduced the time to flowering and the time from bean set to 50% maturity and increased the number and yield of mature beans whereas increased CO2 concentration had little effect on plant growth except that bean yield was very slightly reduced. There was no significant evidence of interaction between the CO2 concentration effects and the temperature effects. The time to maturity and yield of mature beans was simulated for the 2020s (2010 to 2039) and the 2050s (2040 to 2069) using the fitted polynomial models and four climate change scenarios suggested by the UK Climate Impacts Programme. These simulations showed that, depending upon the assumed scenario, the 2020s yields could rise by 39–84% and time to maturity reduce by between 6 and 15 days whereas the 2050s yields could rise by 51–118% and time to maturity reduce by between 9 and 25 days

    The effect of cultural and environmental factors on potato seed tuber morphology and subsequent sprout and stem development

    Get PDF
    Seed crops of the variety Estima were grown in each of 2 years using two planting dates, two harvest dates, two plant densities and two irrigation regimes to produce seed tubers which had experienced different cultural and environmental conditions. The effects of these treatments on tuber characteristics, sprout production and stem development in the ware crop were then determined in subsequent experiments using storage regimes of 3 and 10 °C. Time of planting the seed crop affected numbers of eyes, sprouts and above ground stems in the subsequent ware crop because environmental conditions around the time of tuber initiation appeared to alter tuber shape. Cooler, wetter conditions in the 7 days after tuber initiation were associated with tubers which were longer, heavier and had more eyes, sprouts and above ground stems. In contrast, the time of harvesting the seed crop did not affect tuber shape or numbers of above ground stems and there was no interaction with tuber size. The density of the seed crop had no effect on any character measured and irrigation well after tuber initiation did not affect tuber shape, numbers of sprouts or numbers of stems. Seed production treatments, which resulted in earlier dormancy break, were associated with tubers that produced more sprouts and above ground stems, in contrast to the conventional understanding of apical dominance. Storage at 3 °C gave fewer sprouts, a lower proportion of eyes with sprouts and fewer stems than storage at 10 °C. The major effects on stem production appear to result from environmental conditions at the time of tuber initiation of the seed crop and sprouting temperature

    Statistical Inference in a Directed Network Model with Covariates

    Get PDF
    Networks are often characterized by node heterogeneity for which nodes exhibit different degrees of interaction and link homophily for which nodes sharing common features tend to associate with each other. In this paper, we propose a new directed network model to capture the former via node-specific parametrization and the latter by incorporating covariates. In particular, this model quantifies the extent of heterogeneity in terms of outgoingness and incomingness of each node by different parameters, thus allowing the number of heterogeneity parameters to be twice the number of nodes. We study the maximum likelihood estimation of the model and establish the uniform consistency and asymptotic normality of the resulting estimators. Numerical studies demonstrate our theoretical findings and a data analysis confirms the usefulness of our model.Comment: 29 pages. minor revisio

    Tests of cosmic ray radiography for power industry applications

    Full text link
    In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wall thickness. This work is motivated by the need for radiographic methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.Comment: LA-UR-15-2212

    Structural parameterizations for boxicity

    Full text link
    The boxicity of a graph GG is the least integer dd such that GG has an intersection model of axis-aligned dd-dimensional boxes. Boxicity, the problem of deciding whether a given graph GG has boxicity at most dd, is NP-complete for every fixed d2d \ge 2. We show that boxicity is fixed-parameter tractable when parameterized by the cluster vertex deletion number of the input graph. This generalizes the result of Adiga et al., that boxicity is fixed-parameter tractable in the vertex cover number. Moreover, we show that boxicity admits an additive 11-approximation when parameterized by the pathwidth of the input graph. Finally, we provide evidence in favor of a conjecture of Adiga et al. that boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page

    The Claims Culture: A Taxonomy of Industry Attitudes

    Get PDF
    This paper presents an analysis of a familiar aspect of construction industry culture that we have dubbed 'the claims culture'. This is a culture of contract administration that lays a strong emphasis on the planning and management of claims. The principal elements of the analysis are two sets of distinctions. The first comprises economic and occupational orders, referring to two kinds of control that are exercised over the construction process; predicated respectively on economic ownership and occupational competence. The second refers to contrasting attitudes towards relationships and problem solving within these orders: respectively 'distributive' and 'integrative'. The concepts of economic and occupational order entail further sub-categories. The various attitudes associated with these categories and sub-categories are described. They are assessed as to their consequences for change initiatives in the industry

    On Feedback Vertex Set: New Measure and New Structures

    Full text link
    We present a new parameterized algorithm for the {feedback vertex set} problem ({\sc fvs}) on undirected graphs. We approach the problem by considering a variation of it, the {disjoint feedback vertex set} problem ({\sc disjoint-fvs}), which finds a feedback vertex set of size kk that has no overlap with a given feedback vertex set FF of the graph GG. We develop an improved kernelization algorithm for {\sc disjoint-fvs} and show that {\sc disjoint-fvs} can be solved in polynomial time when all vertices in GFG \setminus F have degrees upper bounded by three. We then propose a new branch-and-search process on {\sc disjoint-fvs}, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which {\sc disjoint-fvs} becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an O(3.83k)O^*(3.83^k)-time parameterized algorithm for the general {\sc fvs} problem, improving all previous algorithms for the problem.Comment: Final version, to appear in Algorithmic

    Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

    Full text link
    A 3-path vertex cover in a graph is a vertex subset CC such that every path of three vertices contains at least one vertex from CC. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most kk. In this paper, we give a kernel of 5k5k vertices and an O(1.7485k)O^*(1.7485^k)-time and polynomial-space algorithm for this problem, both new results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201

    Climate change: a response surface study of the effects of CO 2

    Get PDF
    The possible impact of global rises in atmospheric CO2 concentration and temperature on the growth and development of French beans (Phaseolus vulgaris) was examined using growth cabinets. Five CO2 concentrations of 350, 450, 550, 650 and 750 vpm and five temperatures of 14·5, 15·5, 16·5, 17·5 and 18·5°C were tested using a fractional factorial design comprising nine treatment combinations of the two factors. Plants were grown under constant irradiance, common atmospheric humidities (vpd 0·5 kPa) and non-limiting supplies of water and mineral nutrients. The plant growth response was modelled by fitting polynomial response function curves to the times to first flower opening, first bean set, 50% maturity and the number and yield of beans. The effects of temperature were large and positive for most of the measured variables, whereas the effects of CO2 were small and negative or non-existent. Increased temperature substantially reduced the time to flowering and the time from bean set to 50% maturity and increased the number and yield of mature beans whereas increased CO2 concentration had little effect on plant growth except that bean yield was very slightly reduced. There was no significant evidence of interaction between the CO2 concentration effects and the temperature effects. The time to maturity and yield of mature beans was simulated for the 2020s (2010 to 2039) and the 2050s (2040 to 2069) using the fitted polynomial models and four climate change scenarios suggested by the UK Climate Impacts Programme. These simulations showed that, depending upon the assumed scenario, the 2020s yields could rise by 39–84% and time to maturity reduce by between 6 and 15 days whereas the 2050s yields could rise by 51–118% and time to maturity reduce by between 9 and 25 days
    corecore