2,369 research outputs found
Secure Degrees of Freedom of MIMO X-Channels with Output Feedback and Delayed CSIT
We investigate the problem of secure transmission over a two-user multi-input
multi-output (MIMO) X-channel in which channel state information is provided
with one-unit delay to both transmitters (CSIT), and each receiver feeds back
its channel output to a different transmitter. We refer to this model as MIMO
X-channel with asymmetric output feedback and delayed CSIT. The transmitters
are equipped with M-antennas each, and the receivers are equipped with
N-antennas each. For this model, accounting for both messages at each receiver,
we characterize the optimal sum secure degrees of freedom (SDoF) region. We
show that, in presence of asymmetric output feedback and delayed CSIT, the sum
SDoF region of the MIMO X-channel is same as the SDoF region of a two-user MIMO
BC with 2M-antennas at the transmitter, N-antennas at each receiver and delayed
CSIT. This result shows that, upon availability of asymmetric output feedback
and delayed CSIT, there is no performance loss in terms of sum SDoF due to the
distributed nature of the transmitters. Next, we show that this result also
holds if only output feedback is conveyed to the transmitters, but in a
symmetric manner, i.e., each receiver feeds back its output to both
transmitters and no CSIT. We also study the case in which only asymmetric
output feedback is provided to the transmitters, i.e., without CSIT, and derive
a lower bound on the sum SDoF for this model. Furthermore, we specialize our
results to the case in which there are no security constraints. In particular,
similar to the setting with security constraints, we show that the optimal sum
DoF region of the (M,M,N,N)--MIMO X-channel with asymmetric output feedback and
delayed CSIT is same as the DoF region of a two-user MIMO BC with 2M-antennas
at the transmitter, N-antennas at each receiver, and delayed CSIT. We
illustrate our results with some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit
Congressional Striptease: How the Failure of the 108th Congress\u27s Jurisdiction Stripping Bills Were Used for Political Success
On the Stability of Random Multiple Access with Stochastic Energy Harvesting
In this paper, we consider the random access of nodes having energy
harvesting capability and a battery to store the harvested energy. Each node
attempts to transmit the head-of-line packet in the queue if its battery is
nonempty. The packet and energy arrivals into the queue and the battery are all
modeled as a discrete-time stochastic process. The main contribution of this
paper is the exact characterization of the stability region of the packet
queues given the energy harvesting rates when a pair of nodes are randomly
accessing a common channel having multipacket reception (MPR) capability. The
channel with MPR capability is a generalized form of the wireless channel
modeling which allows probabilistic receptions of the simultaneously
transmitted packets. The results obtained in this paper are fairly general as
the cases with unlimited energy for transmissions both with the collision
channel and the channel with MPR capability can be derived from ours as special
cases. Furthermore, we study the impact of the finiteness of the batteries on
the achievable stability region.Comment: The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Saint Petersburg, Russia, Aug.
201
Subspace Methods for Data Attack on State Estimation: A Data Driven Approach
Data attacks on state estimation modify part of system measurements such that
the tempered measurements cause incorrect system state estimates. Attack
techniques proposed in the literature often require detailed knowledge of
system parameters. Such information is difficult to acquire in practice. The
subspace methods presented in this paper, on the other hand, learn the system
operating subspace from measurements and launch attacks accordingly. Conditions
for the existence of an unobservable subspace attack are obtained under the
full and partial measurement models. Using the estimated system subspace, two
attack strategies are presented. The first strategy aims to affect the system
state directly by hiding the attack vector in the system subspace. The second
strategy misleads the bad data detection mechanism so that data not under
attack are removed. Performance of these attacks are evaluated using the IEEE
14-bus network and the IEEE 118-bus network.Comment: 12 page
GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection
Change detection (CD) is an important application of remote sensing, which
provides timely change information about large-scale Earth surface. With the
emergence of hyperspectral imagery, CD technology has been greatly promoted, as
hyperspectral data with the highspectral resolution are capable of detecting
finer changes than using the traditional multispectral imagery. Nevertheless,
the high dimension of hyperspectral data makes it difficult to implement
traditional CD algorithms. Besides, endmember abundance information at subpixel
level is often not fully utilized. In order to better handle high dimension
problem and explore abundance information, this paper presents a General
End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image
change detection (HSI-CD). The main contributions of this work are threefold:
1) Mixed-affinity matrix that integrates subpixel representation is introduced
to mine more cross-channel gradient features and fuse multi-source information;
2) 2-D CNN is designed to learn the discriminative features effectively from
multi-source data at a higher level and enhance the generalization ability of
the proposed CD algorithm; 3) A new HSI-CD data set is designed for the
objective comparison of different methods. Experimental results on real
hyperspectral data sets demonstrate the proposed method outperforms most of the
state-of-the-arts
Channel-Aware Random Access in the Presence of Channel Estimation Errors
In this work, we consider the random access of nodes adapting their
transmission probability based on the local channel state information (CSI) in
a decentralized manner, which is called CARA. The CSI is not directly available
to each node but estimated with some errors in our scenario. Thus, the impact
of imperfect CSI on the performance of CARA is our main concern. Specifically,
an exact stability analysis is carried out when a pair of bursty sources are
competing for a common receiver and, thereby, have interdependent services. The
analysis also takes into account the compound effects of the multipacket
reception (MPR) capability at the receiver. The contributions in this paper are
twofold: first, we obtain the exact stability region of CARA in the presence of
channel estimation errors; such an assessment is necessary as the errors in
channel estimation are inevitable in the practical situation. Secondly, we
compare the performance of CARA to that achieved by the class of stationary
scheduling policies that make decisions in a centralized manner based on the
CSI feedback. It is shown that the stability region of CARA is not necessarily
a subset of that of centralized schedulers as the MPR capability improves.Comment: The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Cambridge, MA, USA, July 201
Deriving Good LDPC Convolutional Codes from LDPC Block Codes
Low-density parity-check (LDPC) convolutional codes are capable of achieving
excellent performance with low encoding and decoding complexity. In this paper
we discuss several graph-cover-based methods for deriving families of
time-invariant and time-varying LDPC convolutional codes from LDPC block codes
and show how earlier proposed LDPC convolutional code constructions can be
presented within this framework. Some of the constructed convolutional codes
significantly outperform the underlying LDPC block codes. We investigate some
possible reasons for this "convolutional gain," and we also discuss the ---
mostly moderate --- decoder cost increase that is incurred by going from LDPC
block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010;
revised August 2010, revised November 2010 (essentially final version).
(Besides many small changes, the first and second revised versions contain
corrected entries in Tables I and II.
The ACS Virgo Cluster Survey IV: Data Reduction Procedures for Surface Brightness Fluctuation Measurements with the Advanced Camera for Surveys
The Advanced Camera for Surveys (ACS) Virgo Cluster Survey is a large program
to image 100 early-type Virgo galaxies using the F475W and F850LP bandpasses of
the Wide Field Channel of the ACS instrument on the Hubble Space Telescope
(HST). The scientific goals of this survey include an exploration of the
three-dimensional structure of the Virgo Cluster and a critical examination of
the usefulness of the globular cluster luminosity function as a distance
indicator. Both of these issues require accurate distances for the full sample
of 100 program galaxies. In this paper, we describe our data reduction
procedures and examine the feasibility of accurate distance measurements using
the method of surface brightness fluctuations (SBF) applied to the ACS Virgo
Cluster Survey F850LP imaging. The ACS exhibits significant geometrical
distortions due to its off-axis location in the HST focal plane; correcting for
these distortions by resampling the pixel values onto an undistorted frame
results in pixel correlations that depend on the nature of the interpolation
kernel used for the resampling. This poses a major challenge for the SBF
technique, which normally assumes a flat power spectrum for the noise. We
investigate a number of different interpolation kernels and show through an
analysis of simulated galaxy images having realistic noise properties that it
is possible, depending on the kernel, to measure SBF distances using
distortion-corrected ACS images without introducing significant additional
error from the resampling. We conclude by showing examples of real image power
spectra from our survey.Comment: ApJS, in press, complete version of the paper at the link:
http://www.physics.rutgers.edu/~pcote/acs/publications.htm
Systematic Error-Correcting Codes for Rank Modulation
The rank-modulation scheme has been recently proposed for efficiently storing
data in nonvolatile memories. Error-correcting codes are essential for rank
modulation, however, existing results have been limited. In this work we
explore a new approach, \emph{systematic error-correcting codes for rank
modulation}. Systematic codes have the benefits of enabling efficient
information retrieval and potentially supporting more efficient encoding and
decoding procedures. We study systematic codes for rank modulation under
Kendall's -metric as well as under the -metric.
In Kendall's -metric we present -systematic codes for
correcting one error, which have optimal rates, unless systematic perfect codes
exist. We also study the design of multi-error-correcting codes, and provide
two explicit constructions, one resulting in systematic codes
with redundancy at most . We use non-constructive arguments to show the
existence of -systematic codes for general parameters. Furthermore,
we prove that for rank modulation, systematic codes achieve the same capacity
as general error-correcting codes.
Finally, in the -metric we construct two systematic
multi-error-correcting codes, the first for the case of , and the
second for . In the latter case, the codes have the same
asymptotic rate as the best codes currently known in this metric
- …
