133 research outputs found

    Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues

    Get PDF
    NMR represents a key spectroscopic technique that contributes to the emerging field of highly flexible, intrinsically disordered proteins (IDPs) or protein regions (IDRs) that lack a stable three-dimensional structure. A set of exclusively heteronuclear NMR experiments tailored for proline residues, highly abundant in IDPs/IDRs, are presented here. They provide a valuable complement to the widely used approach based on amide proton detection, filling the gap introduced by the lack of amide protons in proline residues within polypeptide chains. The novel experiments have very interesting properties for the investigations of IDPs/IDRs of increasing complexity.</p

    Notch and NF-kB: Coach and Players of Regulatory T-Cell Resposnse in Cancer

    Get PDF
    The Notch signaling pathway plays multiple roles in driving T-cell fate decisions, proliferation, and aberrant growth. NF-kB is a cell-context key player interconnected with Notch signaling either in physiological or in pathological conditions. This review focuses on how themultilayered crosstalk between different Notches and NF-kB subunits may converge on Foxp3 gene regulation and orchestrate CD4+ regulatory T (Treg) cell function, particularly in a tumor microenvironment. Notably, Treg cells may play a pivotal role in the inhibition of antitumor immune responses, possibly promoting tumor growth. A future challenge is represented by further dissection of both Notch and NF-kB pathways and consequences of their intersection in tumor-associated Treg biology. This may shed light on themolecularmechanisms regulating Treg cell expansion andmigration to peripheral lymphoid organs thought to facilitate tumor development and still to be explored. In so doing, new opportunities for combined and/or more selective therapeutic Q25 approaches to improve anticancer immunity may be found

    A further investigation of the cytochrome b5–cytochrome c complex

    Get PDF
    J Biol Inorg Chem (2003) 8: 777–786The interaction of reduced rabbit cytochrome b5 with reduced yeast iso-1 cytochrome c has been studied through the analysis of 1H–15N HSQC spectra, of 15N longitudinal (R1) and transverse (R2) relaxation rates, and of the solvent exchange rates of protein backbone amides. For the first time, the adduct has been investigated also from the cytochrome c side. The analysis of the NMR data was integrated with docking calculations. The result is that cytochrome b5 has two negative patches capable of interacting with a single positive surface area of cytochrome c. At low protein concentrations and in equimolar mixture, two different 1:1 adducts are formed. At high concentration and/or with excess cytochrome c, a 2:1 adduct is formed. All the species are in fast exchange on the scale of differences in chemical shift. By comparison with literature data, it appears that the structure of one 1:1 adduct changes with the origin or primary sequence of cytochrome b5

    Maml1 acts cooperatively with Gli proteins to regulate Sonic hedgheog signaling pathway

    Get PDF
    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (GCPs) and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma. The effects of Shh pathway are mediated by the Gli family of transcription factors, which controls the expression of a number of target genes, including Gli1. Here, we identify Mastermind-like 1 (Maml1) as a novel regulator of the Shh signaling since it interacts with Gli proteins, working as a potent transcriptional coactivator. Notably, Maml1 silencing results in a significant reduction of Gli target genes expression, with a negative impact on cell growth of NIH3T3 and Patched1−/− mouse embryonic fibroblasts (MEFs), bearing a constitutively active Shh signaling. Remarkably, Shh pathway activity results severely compromised both in MEFs and GCPs deriving from Maml1−/− mice with an impairment of GCPs proliferation and cerebellum development. Therefore Maml1−/− phenotype mimics aspects of Shh pathway deficiency, suggesting an intrinsic requirement for Maml1 in cerebellum development. The present study shows a new role for Maml1 as a component of Shh signaling, which plays a crucial role in both development and tumorigenesis

    The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions.

    Get PDF
    When present, structural disorder makes it very challenging to characterise the conformational properties of proteins. This is particularly the case of proteins, such as the oncogene protein E7 of human papillomavirus type 16, which contain both ordered and disordered domains, and that can populate monomeric and oligomeric states under physiological conditions. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a powerful method to study these complex systems, most notably in combination with molecular dynamics simulations. Here we use NMR chemical shifts and residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations to determine the free energy landscape of E7. This landscape reveals a complex interplay between a folded but highly dynamical C-terminal domain and a disordered N-terminal domain that forms transient secondary and tertiary structures, as well as an equilibrium between a high-populated (98%) dimeric state and a low-populated (2%) monomeric state. These results provide compelling evidence of the complex conformational heterogeneity associated with the behaviour and interactions of this disordered protein associated with disease.University of Florence (Italy) “Science without borders” of the Brazilian Ministry of Science and Technology (CNPq

    Intrathymic Notch3 and CXCR4 combinatorial interplay facilitates T-cell leukemia propagation.

    Get PDF
    Notch hyperactivation dominates T-cell acute lymphoblastic leukemia development, but the mechanisms underlying "pre-leukemic-cells" dissemination are still unclear. Here we describe how deregulated Notch3 signaling enhances CXCR4 cell-surface expression and migratory ability of CD4+CD8+ thymocytes, possibly contributing to “pre-leukemic” cell propagation, early in disease progression. In transgenic mice overexpressing the constitutively active Notch3 intracellular domain, we detect the progressive increase in circulating blood and bone marrow of CD4+CD8+-cells, characterized by high and combined surface expression of Notch3 and CXCR4. We report for the first time that transplantation of such CD4+CD8+-cells, reveals their competence in infiltrating spleen and bone marrow of immunocompromised recipient mice. We also show that CXCR4 surface expression is central to the migratory ability of CD4+CD8+-cells and that such an expression is regulated by Notch3 through ïą-arrestin in human leukemia cells. De novo, we propose that hyperactive Notch3 signaling by boosting CXCR4-dependent migration promotes anomalous egression of CD4+CD8+-cells from the thymus in early leukemia stages. In fact, in vivo CXCR4 antagonism prevents bone marrow colonization by such CD4+CD8+ cells in young Notch3 transgenic mice. Therefore, our data suggest that combined therapies precociously counteracting intrathymic Notch3/CXCR4 crosstalk, may prevent dissemination of “pre-leukemic” CD4+CD8+-cells, by a “thymus-autonomous” mechanism
    • 

    corecore