837 research outputs found

    Quantitative Evidence for the Effects of Multiple Drivers on Continental-Scale Amphibian Declines

    Get PDF
    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a ā€œsmoking gunā€ was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed

    Quantitative Evidence for the Effects of Multiple Drivers on Continental-Scale Amphibian Declines

    Get PDF
    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a ā€œsmoking gunā€ was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed

    Seasonal Distribution, Aggregation, and Habitat Selection of Common Carp in Clear Lake, Iowa

    Get PDF
    The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005ā€“2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems

    Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    Get PDF
    Citation: Shoup Rupp, J. L., Simon, Z. G., Gillett-Walker, B., & Fellers, J. P. (2014). Resistance to Wheat streak mosaic virus identified in synthetic wheat lines. Retrieved from http://krex.ksu.eduWheat streak mosaic virus (WSMV) is an important pathogen in wheat that causes significant yield losses each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resistance genes to WSMV. Two resistance genes have been derived from Thinopyrum intermedium through chromosome engineering, while a third gene was transferred from bread wheat through classical breeding. New sources of resistance are needed and synthetic wheat lines provide a means of accessing genetic variability in wheat progenitors. A collection of wheat synthetic lines was screened for WSMV resistance. Four lines, 07-SYN-27, -106, -164, and -383 had significant levels of resistance. Resistance was effective at 18 Ā°C and virus accumulation was similar to the resistant control, WGGRC50 containing Wsm1. At 25 Ā°C, resistance was no longer effective and virus accumulation was similar to the susceptible control, Tomahawk

    Chemical Defense by the Native Winter Ant (Prenolepis imparis) against the Invasive Argentine Ant (Linepithema humile)

    Get PDF
    The invasive Argentine ant (Linepithema humile) is established worldwide and displaces native ant species. In northern California, however, the native winter ant (Prenolepis imparis) persists in invaded areas. We found that in aggressive interactions between the two species, P. imparis employs a potent defensive secretion. Field observations were conducted at P. imparis nest sites both in the presence and absence of L. humile. These observations suggested and laboratory assays confirmed that P. imparis workers are more likely to secrete when outnumbered by L. humile. Workers of P. imparis were also more likely to secrete near their nest entrances than when foraging on trees. One-on-one laboratory trials showed that the P. imparis secretion is highly lethal to L. humile, causing 79% mortality. The nonpolar fraction of the secretion was chemically analyzed with gas chromatography/mass spectrometry, and found to be composed of long-chain and cyclic hydrocarbons. Chemical analysis of dissected P. imparis workers showed that the nonpolar fraction is derived from the Dufour's gland. Based on these conclusions, we hypothesize that this chemical defense may help P. imparis to resist displacement by L. humile

    Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    Get PDF
    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the augcc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuationopen

    Measurement of exclusive pion pair production in protonā€“proton collisions at āˆšs=7 TeV with the ATLAS detector

    Get PDF

    Search for resonant WZ production in the fully leptonic final state in protonā€“proton collisions at āˆšs=13 TeV with the ATLAS detector

    Get PDF
    • ā€¦
    corecore