26 research outputs found

    A high-resolution, four-band SAR testbed with real-time image formation

    Get PDF
    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms

    Taming the tiger by the tail: modulation of DNA damage responses by telomeres

    Get PDF
    Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed

    Xrs2 facilitates crossovers during DNA double-strand gap repair in yeast.

    No full text
    Xrs2 is a member of the MRX complex (Mre11/Rad50/Xrs2) in Saccharomyces cerevisiae. In this study we demonstrate the important role of the MRX complex and in more detail of Xrs2 for the repair of radiation-induced chromosomal double-strand breaks by pulsed field gel electrophoresis. By using a newly designed in vivo plasmid-chromosome recombination system, we could show that gap repair efficiency and the association with crossovers were reduced in the MRX null mutants, but repair accuracy was unaffected. For these processes, an intact Mre11-binding domain of Xrs2 is crucial, whereas the FHA- and BRCT-domains as well as the Tel1-binding domain of Xrs2 are dispensable. Obviously, the Mre11-binding domain of the Xrs2 protein is crucial for the analysed functions and our results suggest a new role of the MRX complex for the formation of crossovers. Analysis of double mutants showed that the phenotype of the Deltaxrs2 null mutant concerning the crossover frequency is dominant over the phenotypes of Deltasrs2 and Deltasgs1 null mutants. Thus, the complex seems to be involved in early steps of double-strand break and gap repair, and we propose that it has a regulatory role for the selection of homologous recombination pathways
    corecore