3,621 research outputs found

    Auto-tuning Distributed Stream Processing Systems using Reinforcement Learning

    Get PDF
    Fine tuning distributed systems is considered to be a craftsmanship, relying on intuition and experience. This becomes even more challenging when the systems need to react in near real time, as streaming engines have to do to maintain pre-agreed service quality metrics. In this article, we present an automated approach that builds on a combination of supervised and reinforcement learning methods to recommend the most appropriate lever configurations based on previous load. With this, streaming engines can be automatically tuned without requiring a human to determine the right way and proper time to deploy them. This opens the door to new configurations that are not being applied today since the complexity of managing these systems has surpassed the abilities of human experts. We show how reinforcement learning systems can find substantially better configurations in less time than their human counterparts and adapt to changing workloads

    On the Hardness-Intensity Correlation in Gamma-Ray Burst Pulses

    Get PDF
    We study the hardness-intensity correlation (HIC) in gamma-ray bursts (GRBs). In particular, we analyze the decay phase of pulse structures in their light curves. The study comprises a sample of 82 long pulses selected from 66 long bursts observed by BATSE on the Compton Gamma-Ray Observatory. We find that at least 57% of these pulses have HICs that can be well described by a power law. The distribution of the power law indices, obtained by modeling the HIC of pulses from different bursts, is broad with a mean of 1.9 and a standard deviation of 0.7. We also compare indices among pulses from the same bursts and find that their distribution is significantly narrower. The probability of a random coincidence is shown to be very small. In most cases, the indices are equal to within the uncertainties. This is particularly relevant when comparing the external versus the internal shock models. In our analysis, we also use a new method for studying the HIC, in which the intensity is represented by the peak value of the E F_E spectrum. This new method gives stronger correlations and is useful in the study of various aspects of the HIC. In particular, it produces a better agreement between indices of different pulses within the same burst. Also, we find that some pulses exhibit a "track jump" in their HICs, in which the correlation jumps between two power laws with the same index. We discuss the possibility that the "track jump" is caused by strongly overlapping pulses. Based on our findings, the constancy of the index is proposed to be used as a tool for pulse identification in overlapping pulses.Comment: 20 pages with 9 eps figures (emulateapj), ApJ accepte

    Invertibility of frame operators on Besov-type decomposition spaces

    Full text link
    We derive an extension of the Walnut-Daubechies criterion for the invertibility of frame operators. The criterion concerns general reproducing systems and Besov-type spaces. As an application, we conclude that L2L^2 frame expansions associated with smooth and fast-decaying reproducing systems on sufficiently fine lattices extend to Besov-type spaces. This simplifies and improves recent results on the existence of atomic decompositions, which only provide a particular dual reproducing system with suitable properties. In contrast, we conclude that the L2L^2 canonical frame expansions extend to many other function spaces, and, therefore, operations such as analyzing using the frame, thresholding the resulting coefficients, and then synthesizing using the canonical dual frame are bounded on these spaces

    Determining Bolometric Corrections for BATSE Burst Observations

    Full text link
    We compare the energy and count fluxes obtained by integrating over the finite bandwidth of BATSE with a measure proportional to the bolometric energy flux, the phi-measure, introduced by Borgonovo & Ryde. We do this on a sample of 74 bright, long, and smooth pulses from 55 GRBs. The correction factors show a fairly constant behavior over the whole sample, when the signal-to-noise-ratio is high enough. We present the averaged spectral bolometric correction for the sample, which can be used to correct flux data.Comment: 3 pages, 3 figures, to appear in AIP proc. "Gamma-Ray Burst and Afterglow Astronomy 2001" Woods Hole, Massachusett

    When omnigeneity fails

    Full text link
    A generic non-symmetric magnetic field does not confine magnetized charged particles for long times due to secular magnetic drifts. Stellarator magnetic fields should be omnigeneous (that is, designed such that the secular drifts vanish), but perfect omnigeneity is technically impossible. There always are small deviations from omnigeneity that necessarily have large gradients. The amplification of the energy flux caused by a deviation of size ϵ\epsilon is calculated and it is shown that the scaling with ϵ\epsilon of the amplification factor can be as large as linear. In opposition to common wisdom, most of the transport is not due to particles trapped in ripple wells, but to the perturbed motion of particles trapped in the omnigeneous magnetic wells around their bounce points.Comment: 6 pages, 2 figure

    A robust comparison of dynamical scenarios in a glass-forming liquid

    Get PDF
    We use Bayesian inference methods to provide fresh insights into the sub-nanosecond dynamics of glycerol, a prototypical glass-forming liquid. To this end, quasielastic neutron scattering data as a function of temperature have been analyzed using a minimal set of underlying physical assumptions. On the basis of this analysis, we establish the unambiguous presence of three distinct dynamical processes in glycerol, namely, translational diffusion of the molecular centre of mass and two additional localized and temperature-independent modes. The neutron data also provide access to the characteristic length scales associated with these motions in a model-independent manner, from which we conclude that the faster (slower) localized motions probe longer (shorter) length scales. Careful Bayesian analysis of the entire scattering law favors a heterogeneous scenario for the microscopic dynamics of glycerol, where molecules undergo either the faster and longer or the slower and shorter localized motions.Peer ReviewedPostprint (author's final draft
    corecore