13,012 research outputs found

    High-Resolution Images of Diffuse Neutral Clouds in the Milky Way. I. Observations, Imaging, and Basic Cloud Properties

    Full text link
    A set of diffuse interstellar clouds in the inner Galaxy within a few hundred pc of the Galactic plane has been observed at an angular resolution of ~1 arcmin combining data from the NRAO Green Bank Telescope and the Very Large Array. At the distance of the clouds the linear resolution ranges from ~1.9 pc to ~2.8 pc. These clouds have been selected to be somewhat out of the Galactic plane and are thus not confused with unrelated emission, but in other respects they are a Galactic population. They are located near the tangent points in the inner Galaxy, and thus at a quantifiable distance: 2.3≤R≤6.02.3 \leq R \leq 6.0 kpc from the Galactic Center, and −1000≤z≤+610-1000 \leq z \leq +610 pc from the Galactic plane. These are the first images of the diffuse neutral HI clouds that may constitute a considerable fraction of the ISM. Peak HI column densities range from NHI=0.8−2.9×1020N_{HI} = 0.8-2.9 \times 10^{20} cm−2^{-2}. Cloud diameters vary between about 10 and 100 pc, and their HI mass spans the range from less than a hundred to a few thousands Msun. The clouds show no morphological consistency of any kind except that their shapes are highly irregular. One cloud may lie within the hot wind from the nucleus of the Galaxy, and some clouds show evidence of two distinct thermal phases as would be expected from equilibrium models of the interstellar medium.Comment: 81 pages, 42 figures, accepted for publication in the Astrophysical Journal Supplement Serie

    Electrostatic potential variations on stellarator magnetic surfaces in low collisionality regimes

    Full text link
    The component of the neoclassical electrostatic potential that is non-constant on the magnetic surface, that we denote by φ~\tilde\varphi, can affect radial transport of highly charged impurities, and this has motivated its inclusion in some modern neoclassical codes. The number of neoclassical simulations in which φ~\tilde\varphi is calculated is still scarce, partly because they are usually demanding in terms of computational resources, especially at low collisionality. In this paper the size, the scaling with collisionality and with aspect ratio, and the structure of φ~\tilde\varphi on the magnetic surface are analytically derived in the 1/ν1/\nu, ν\sqrt{\nu} and superbanana-plateau regimes of stellarators close to omnigeneity; i. e. stellarators that have been optimized for neoclassical transport. It is found that the largest φ~\tilde\varphi that the neoclassical equations admit scales linearly with the inverse aspect ratio and with the size of the deviation from omnigeneity. Using a model for a perturbed omnigeneous configuration, the analytical results are verified and illustrated with calculations by the code KNOSOS. The techniques, results and numerical tools employed in this paper can be applied to neoclassical transport problems in tokamaks with broken axisymmetry.Comment: 30 pages, 12 figures, 1 table. Published versio

    Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    Get PDF
    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code

    Comment on the paper "Calorimetric Dark Matter Detection with Galactic Center Gas Clouds"

    Get PDF
    The paper "Calorimetric Dark Matter Detection with Galactic Center Gas Clouds" (Bhoonah et al. 2018) aims to derive limits on dark matter interactions by demanding that heat transfer due to DM interactions is less than that by astrophysical cooling, using clouds in the hot, high-velocity nuclear outflow wind of the Milky Way (Twind∼106−7T_{wind} \sim 10^{6-7} K, Vwind∼V_{wind} \sim 330 km/s). We argue that clouds in such an extreme environment cannot be assumed to be stable over the long timescales associated with their radiative cooling rates. Furthermore, Bhoonah et al. (2018) uses incorrect parameters for their clouds.Comment: 2 pages, 1 figure. Version appearing in Phys. Rev. Let

    A Prospective study to compare the efficacy of Recombinant Epidermal growth factor in Wound Healing with Normal Saline Dressing

    Get PDF
    BACKGROUND AND OBJECTIVE: Ulcers are a cause of morbid illness prolonging the hospital stay of patients for want of utmost care in order to avoid amputations. Various advanced treatment modalities are being available these days to reduce the morbidity and quicken the process of healing. One such readily available product is the Human Recombinant Epidermal Growth Factor which has proven efficacy in increasing the healing rate. This study is aimed at comparing the efficacy of rhEGF (available in the brand name REGEN D 150) to normal saline dressings in improving the healing rate of large ulcers. METHODS: Between March 2016 and September 2016, 104 patients with ulcers who got admitted to Institute of General Surgery, Rajiv Gandhi Government General Hospital, Chennai were recruited to the study by randomising them to test and control groups. The study ended with 100 patients, 50 in each group and both the systems were compared. The effects of rhEGF on wound healing were analysed and compared to that of the conventional normal saline dressing. RESULTS: The study group dressed with rhEGF showed a significant reduction in size of the ulcers irrespective of other comorbidities or sites of ulcer. The healing rate was calculated as percentage reduction in size per week and the significance was analysed. Further analysis was done on the infectivity rate of ulcers in each group and found that rhEGF significantly prevents ulcers from micro organism colonisation. INTERPRETATION AND CONCLUSION: The efficacy of rhEGF in ulcer healing as analysed in many studies was found to be higher than the usual conventional normal saline dressing and this effect was statistically significant. Large ulcers treated with rhEGF showed an increased healing rate and ulcer was made ready for skin grafting sooner than usual thus avoiding unnecessary amputations

    Nonlocal multi-trace sources and bulk entanglement in holographic conformal field theories

    Full text link
    We consider CFT states defined by adding nonlocal multi-trace sources to the Euclidean path integral defining the vacuum state. For holographic theories, we argue that these states correspond to states in the gravitational theory with a good semiclassical description but with a more general structure of bulk entanglement than states defined from single-trace sources. We show that at leading order in large N, the entanglement entropies for any such state are precisely the same as those of another state defined by appropriate single-trace effective sources; thus, if the leading order entanglement entropies are geometrical for the single-trace states of a CFT, they are geometrical for all the multi-trace states as well. Next, we consider the perturbative calculation of 1/N corrections to the CFT entanglement entropies, demonstrating that these show qualitatively different features, including non-analyticity in the sources and/or divergences in the naive perturbative expansion. These features are consistent with the expectation that the 1/N corrections include contributions from bulk entanglement on the gravity side. Finally, we investigate the dynamical constraints on the bulk geometry and the quantum state of the bulk fields which must be satisfied so that the entropies can be reproduced via the quantum-corrected Ryu-Takayanagi formula.Comment: 60 pages + appendices, 7 figures; v2: minor additions, published versio
    • …
    corecore