3 research outputs found

    CD4+Foxp3+T Regulatory Cells Promote Transplantation Tolerance by Modulating Effector CD4+ T Cells in a Neuropilin-1-Dependent Manner

    Get PDF
    Several mechanisms of immune suppression have been attributed to Foxp3+ T regulatory cells (Treg) including modulation of target cells via inhibition of cell proliferation, alteration of cytokine secretion, and modification of cell phenotype, among others. Neuropilin-1 (Nrp1), a co-receptor protein highly expressed on Treg cells has been involved in tolerance-mediated responses, driving tumor growth and transplant acceptance. Here, we extend our previous findings showing that, despite expressing Foxp3, Nrp1KO Treg cells have deficient suppressive function in vitro in a contact-independent manner. In vivo, the presence of Nrp1 on Treg cells is required for driving long-term transplant tolerance. Interestingly, Nrp1 expression on Treg cells was also necessary for conventional CD4+ T cells (convT) to become Nrp1+Eos+ T cells in vivo. Furthermore, adoptive transfer experiments showed that the disruption of Nrp1 expression on Treg cells not only reduced IL-10 production on Treg cells, but also increased the frequency of IFNγ+ Treg cells. Similarly, the presence of Nrp1KO Treg cells facilitated the occurrence of IFNγ+CD4+ T cells. Interestingly, we proved that Nrp1KO Treg cells are also defective in IL-10 production, which correlates with deficient Nrp1 upregulation by convT cells. Altogether, these findings demonstrate the direct role of Nrp1 on Treg cells during the induction of transplantation tolerance, impacting indirectly the phenotype and function of conventional CD4+ T cells

    T regulatory cells-derived extracellular vesicles and their contribution to the generation of immune tolerance

    No full text
    T regulatory (Treg) cells have a major role in the maintenance of immune tolerance against self and foreign antigens through the control of harmful inflammation. Treg cells exert immunosuppressive function by several mechanisms, which can be distinguished as contact dependent or independent. Recently, the secretion of extracellular vesicles (EVs) by Treg cells has been reported as a novel suppressive mechanism capable of modulating immunity in a cell-contact independent and targeted manner, which has been identified in different pathologic scenarios. EVs are cell-derived membranous structures involved in physiologic and pathologic processes through protein, lipid, and genetic material exchange, which allow intercellular communication. In this review, we revise and discuss current knowledge on Treg cells-mediated immune tolerance giving special attention to the production and release of EVs. Multiple studies support that Treg cells-derived EVs represent a refined intercellular exchange device with the capacity of modulating immune responses, thus creating a tolerogenic microenvironment in a cell-free manner. The mechanisms proposed encompass miRNAs-induced gene silencing, the action of surface proteins and the transmission of enzymes. These observations gain relevance by the fact that Treg cells are susceptible to converting into effector T cells after exposition to inflammatory environments. Yet, in contrast to their cells of origin, EVs are unlikely to be modified under inflammatory conditions, highlighting the advantage of their use. Moreover, we speculate in the possibility that Treg cells may contribute to infectious tolerance via vesicle secretion, intervening with CD4(+)T cells differentiation and/or stability.National Scholarship CONICYT 1160347 1181780 211084

    Decreased invariant natural killer T-cell-mediated antitumor immune response in patients with gastric cancer

    No full text
    Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. Invariant natural killer T (iNKT) cells are innate-like cytotoxic T lymphocytes involved in tumor immune surveillance. They can be activated either through CD1d-presented glycolipid antigens recognized by their invariant T-cell receptor, cytokines or by sensing tumor-associated stress-induced ligands through the natural killer group 2, member D (NKG2D) receptor. Although the number and functionality of iNKT cells may be decreased in several types of cancer, here we show that GC patients presented a mild increase in iNKT cell frequencies and numbers in the blood compared with healthy donors. In GC patients, iNKT cells, expanded in vitro with alpha-galactosyl ceramide and stimulated with phorbol 12-myristate 13-acetate and ionomycin, produced higher levels of interleukin-2 and transforming growth factor-beta, while their capacity to degranulate remained preserved. Because tumor-derived epithelial cell adhesion molecule-positive epithelial cells did not display surface CD1d, and NKG2D ligands (NKG2DLs) were detected in the gastric tumor milieu, we envisioned a role for NKG2D in iNKT cell functions. Peripheral iNKT cells from GC patients and controls presented similar levels of NKG2D; nevertheless, the percentages of interferon-gamma-producing and CD107a-positive iNKT cells from patients were reduced upon challenge with CD1d-negative, NKG2DL-positive K562 cells, suggesting a compromised response by iNKT cells in GC patients, which may not result from impaired NKG2D/NKG2DL signaling. The decreased response of iNKT cells may explain the fact that higher frequencies of circulating iNKT cells did not confer a survival benefit for GC patients. Therefore, functional impairment of iNKT cells in GC may contribute to tumor immune escape and favor disease progression.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 11110456 1130330 University of Chile ENLACE-VID ENL012/15 Biomedical Sciences Institute (ICBM) Funding Grant 2018 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) FONDEQUIP140032 AIC-08 ICBM, School of Medicine of University of Chile, Santiago, Chil
    corecore