950 research outputs found

    Collapses and revivals of stored orbital angular momentum of light in a cold atomic ensemble

    Full text link
    We report on the storage of orbital angular momentum of light in a cold ensemble of cesium atoms. We employ Bragg diffraction to retrieve the stored optical information impressed into the atomic coherence by the incident light fields. The stored information can be manipulated by an applied magnetic field and we were able to observe collapses and revivals due to the rotation of the stored atomic Zeeman coherence for times longer than 15 μs\mu s.Comment: Submitted to Physical Review

    Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble

    Get PDF
    The time dependence of nonclassical correlations is investigated for two fields (1,2) generated by an ensemble of cold Cesium atoms via the protocol of Duan et al. [Nature Vol. 414, p. 413 (2001)]. The correlation function R(t1,t2) for the ratio of cross to auto-correlations for the (1,2) fields at times (t1,t2) is found to have a maximum value Rmax=292(+-)57, which significantly violates the Cauchy-Schwarz inequality R<=1 for classical fields. Decoherence of quantum correlations is observed over 175 ns, and is described by our model, as is a new scheme to mitigate this effect.Comment: 5 pages, 5 figure

    Dynamics of a stored Zeeman coherence grating in an external magnetic field

    Full text link
    We investigate the evolution of a Zeeman coherence grating induced in a cold atomic cesium sample in the presence of an external magnetic field. The gratings are created in a three-beam light storage configuration using two quasi-collinear writing laser pulses and reading with a counterpropagating pulse after a variable time delay. The phase conjugated pulse arising from the atomic sample is monitored. Collapses and revivals of the retrieved pulse are observed for different polarizations of the laser beams and for different directions of the applied magnetic field. While magnetic field inhomogeneities are responsible for the decay of the coherent atomic response, a five-fold increase in the coherence decay time, with respect to no applied magnetic field, is obtained for an appropriate choice of the direction of the applied magnetic field. A simplified theoretical model illustrates the role of the magnetic field mean and its inhomogeneity on the collective atomic response.Comment: To appear in J. Phys.

    Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics

    Full text link
    A phase-stabilized femtosecond laser comb is directly used for high-resolution spectroscopy and absolute optical frequency measurements of one- and two-photon transitions in laser-cooled \rb atoms. Absolute atomic transition frequencies, such as the 5S1/2_{1/2} F=2 \ra 7S1/2_{1/2} F"=2 two-photon resonance measured at 788 794 768 921(44) kHz, are determined without \textit{a priori} knowledge about their values. Detailed dynamics of population transfer driven by a sequence of pulses are uncovered and taken into account for the measurement of the 5P states via resonantly enhanced two-photon transitions.Comment: 5 pages, 4 figures, submitte

    Narrow band amplification of light carrying orbital angular momentum

    Full text link
    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20\% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition 6S1/2(F=3)6P3/2(F=2)6S_{1/2}(F=3)\leftrightarrow 6P_{3/2}(F^{\prime}=2) of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level Λ\Lambda system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states.Comment: 9 pages, 4 figure

    Two-photon transitions driven by a combination of diode and femtosecond lasers

    Full text link
    We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P_{3/2} state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D_{2} lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D_{3/2} and 5D_{5/2} states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.Comment: 4 pages, 4 figure

    Direct measurement of decoherence for entanglement between a photon and stored atomic excitation

    Get PDF
    Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.Comment: 4 pages, 3 figures. Minor changes. Published versio

    Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    Full text link
    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.Comment: 9 pages, 4 figure
    corecore