1,603 research outputs found

    Two-gap superconductivity in heavily n-doped graphene: ab initio Migdal-Eliashberg theory

    Full text link
    Graphene is the only member of the carbon family from zero- to three-dimensional materials for which superconductivity has not been observed yet. At this time, it is not clear whether the quest for superconducting graphene is hindered by technical challenges, or else by the fluctuation of the order parameter in two dimensions. In this area, ab initio calculations are useful to guide experimental efforts by narrowing down the search space. In this spirit, we investigate from first principles the possibility of inducing superconductivity in doped graphene using the fully anisotropic Migdal-Eliashberg theory powered by Wannier-Fourier interpolation. To address a best-case scenario, we consider both electron and hole doping at high carrier densities, so as to align the Fermi level to a van Hove singularity. In these conditions, we find superconducting gaps of ss-wave symmetry, with a slight anisotropy induced by the trigonal warping, and, in the case of nn-doped graphene, an unexpected two-gap structure reminiscent of MgB2_2. Our Migdal-Eliashberg calculations suggest that the observation of superconductivity at low temperature should be possible for nn-doped graphene at carrier densities exceeding 101510^{15} cm2^{-2}

    Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors

    Full text link
    We probe the accuracy limit of {\it ab initio} calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.Comment: 11 pages and 8 figure

    GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite

    Full text link
    We present first-principles calculations of the quasiparticle band structures of four isostructural semiconducting metal chalcogenides A2_2B3_3 (with A = Sb, Bi and B = S, Se) of the stibnite family within the G0_0W0_0 approach. We perform extensive convergence tests and identify a sensitivity of the quasiparticle corrections to the structural parameters and to the semicore dd electrons. Our calculations indicate that all four chalcogenides exhibit direct band gaps, if we exclude some indirect transitions marginally below the direct gap. Relativistic spin-orbit effects are evaluated for the Kohn-Sham band structures, and included as scissor corrections in the quasiparticle band gaps. Our calculated band gaps are 1.5 eV (Sb2_2S3_3), 1.3 eV (Sb2_2Se3_3), 1.4 eV (Bi2_2S3_3) and 0.9 eV (Bi2_2Se3_3). By comparing our calculated gaps with the ideal Shockley-Queisser value we find that all four chalcogenides are promising as light sensitizers for nanostructured photovoltaics.Comment: 11 pages, 5 figures. Revised manuscript - includes spin-orbit interactio

    Groups and the Entropy Floor- XMM-Newton Observations of Two Groups

    Full text link
    Using XMM-Newton spatially resolved X-ray imaging spectroscopy we obtain the temperature, density, entropy, gas mass, and total mass profiles for two groups of galaxies out to ~0.3 Rvir (Rvir, the virial radius). Our density profiles agree well with those derived previously, and the temperature data are broadly consistent with previous results but are considerably more precise. Both of these groups are at the mass scale of 2x10^13 Msolar but have rather different properties. They have considerably lower gas mass fractions at r<0.3 Rvir than the rich clusters. NGC2563, one of the least luminous groups for its X-ray temperature, has a very low gas mass fraction of ~0.004 inside 0.1 Rvir, which rises with radius. NGC4325, one of the most luminous groups at the same average temperature, has a higher gas mass fraction of 0.02. The entropy profiles and the absolute values of the entropy as a function of virial radius also differ, with NGC4325 having a value of ~100 keV cm-2 and NGC2563 a value of ~300 keV cm-2 at r~0.1 Rvir. For both groups the profiles rise monotonically with radius and there is no sign of an entropy "floor". These results are inconsistent with pre-heating scenarios which have been developed to explain the entropy floor in groups but are broadly consistent with models of structure formation which include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process which controls the transformation of gas into stars and thus the formation of structure in the universe.Comment: 22 pages, 2 figure

    Steric engineering of metal-halide perovskites with tunable optical band gaps

    Full text link
    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. Based on these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.Comment: This manuscript was submitted for publication on March 6th, 2014. Many of the results presented in this manuscript were presented at the International Conference on Solution processed Semiconductor Solar Cells, held in Oxford, UK, on 10-12 September 2014. The manuscript is 37 pages long and contains 8 figure

    Origin of superconductivity and latent charge density wave in NbS2_2

    Full text link
    We elucidate the origin of the phonon-mediated superconductivity in 2HH-NbS2_2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2HH-NbS2_2, and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ\Gamma- and KK-centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.Comment: 6 pages, 5 figures and Supplemental Materia

    Band Offsets at the Si/SiO2_2 Interface from Many-Body Perturbation Theory

    Full text link
    We use many-body perturbation theory, the state-of-the-art method for band gap calculations, to compute the band offsets at the Si/SiO2_2 interface. We examine the adequacy of the usual approximations in this context. We show that (i) the separate treatment of band-structure and potential lineup contributions, the latter being evaluated within density-functional theory, is justified, (ii) most plasmon-pole models lead to inaccuracies in the absolute quasiparticle corrections, (iii) vertex corrections can be neglected, (iv) eigenenergy self-consistency is adequate. Our theoretical offsets agree with the experimental ones within 0.3 eV

    Chandra Observations of ULIRGs: Extended Hot Gas Halos in Merging Galaxies

    Full text link
    We study the properties of hot gaseous halos in 10 nearby ultraluminous IRAS galaxies observed with the ACIS instrument on board Chandra. For all sample galaxies, diffuse soft X-ray emissions are found within ~10 kpc of the central region; their spectra are well fitted by a MEKAL model plus emission lines from alpha-elements and other ions. The temperature of the hot gas is about 0.7 keV and metallicity is about 1 solar. Outside the central region, extended hot gaseous halos are found for nine out of the ten ULIRGs. Most spectra of these extended halos can be fitted with a MEKAL model with a temperature of about 0.6 keV and a low metallicity (~ 0.1 solar). We discuss the implications of our results on the origin of X-ray halos in elliptical galaxies and the feedback processes associated with starbursts.Comment: 31 pages, 6 figuers, ApJ in press, accepted versio
    corecore