3,886 research outputs found

    Tracing a relativistic Milky Way within the RAMOD measurement protocol

    Full text link
    Advancement in astronomical observations and technical instrumentation implies taking into account the general relativistic effects due the gravitational fields encountered by the light while propagating from the star to the observer. Therefore, data exploitation for Gaia-like space astrometric mission (ESA, launch 2013) requires a fully relativistic interpretation of the inverse ray-tracing problem, namely the development of a highly accurate astrometric models in accordance with the geometrical environment affecting light propagation itself and the precepts of the theory of measurement. This could open a new rendition of the stellar distances and proper motions, or even an alternative detection perspective of many subtle relativistic effects suffered by light while it is propagating and subsequently recorded in the physical measurements.Comment: Proceeding for "Relativity and Gravitation, 100 Years after Einstein in Prague" to be published by Edition Open Access, revised versio

    Quasiblack holes with pressure: General exact results

    Full text link
    A quasiblack hole is an object in which its boundary is situated at a surface called the quasihorizon, defined by its own gravitational radius. We elucidate under which conditions a quasiblack hole can form under the presence of matter with nonzero pressure. It is supposed that in the outer region an extremal quasihorizon forms, whereas inside, the quasihorizon can be either nonextremal or extremal. It is shown that in both cases, nonextremal or extremal inside, a well-defined quasiblack hole always admits a continuous pressure at its own quasihorizon. Both the nonextremal and extremal cases inside can be divided into two situations, one in which there is no electromagnetic field, and the other in which there is an electromagnetic field. The situation with no electromagnetic field requires a negative matter pressure (tension) on the boundary. On the other hand, the situation with an electromagnetic field demands zero matter pressure on the boundary. So in this situation an electrified quasiblack hole can be obtained by the gradual compactification of a relativistic star with the usual zero pressure boundary condition. For the nonextremal case inside the density necessarily acquires a jump on the boundary, a fact with no harmful consequences whatsoever, whereas for the extremal case the density is continuous at the boundary. For the extremal case inside we also state and prove the proposition that such a quasiblack hole cannot be made from phantom matter at the quasihorizon. The regularity condition for the extremal case, but not for the nonextremal one, can be obtained from the known regularity condition for usual black holes.Comment: 18 pages, no figures; improved introduction, added references, calculations better explaine

    The Formation of non-Keplerian Rings of Matter about Compact Stars

    Get PDF
    The formation of energetic rings of matter in a Kerr spacetime with an outward pointing acceleration field does not appear to have previously been noted as a relativistic effect. In this paper we show that such rings are a gravimagneto effect with no Newtonian analog, and that they do not occur in the static limit. The energy efficiency of these rings can, depending of the strength of the acceleration field, be much greater than that of Keplerian disks. The rings rotate in a direction opposite to that of compact star about which they form. The size and energy efficiency of the rings depend on the fundamental parameters of the spacetime as well as the strength the acceleration field.Comment: 19 pages, 7 figures, 1 diagram. Figures are included in the text using the "graphicx" package. If you do not have this package you can use epsfig, or another package as long as you alter the tex file appropriately. Alternatively you could print the figures out seperatel

    Reissner-Nordstrom and charged gas spheres

    Full text link
    The main point of this paper is a suggestion about the proper treatment of the photon gas in a theory of stellar structure and other plasmas. This problem arises in the study of polytropic gas spheres, where we have already introduced some innovations. The main idea, already advanced in the contextof neutral, homogeneous, polytropic stellar models, is to base the theory firmly on a variational principle. Another essential novelty is to let mass distribution extend to infinity, the boundary between bulk and atmosphere being defined by an abrupt change in the polytropic index, triggered by the density. The logical next step in this program is to include the effect of radiation, which is a very significant complication since a full treatment would have to include an account of ionization, thus fieldsrepresenting electrons, ions, photons, gravitons and neutral atoms as well. In way of preparation, we consider models that are charged but homogeneous, involving only gravity, electromagnetism and a single scalar field that represents both the mass and the electric charge; in short, anon-neutral plasma. While this work only represents a stage in the development of a theory of stars, without direct application to physical systems, it does shed some light on the meaning of the Reissner-Nordstrom solution of the modified Einstein-Maxwell equations., with an application to a simple system.Comment: 19 pages, plain te

    A note on the factorization conjecture

    Full text link
    We give partial results on the factorization conjecture on codes proposed by Schutzenberger. We consider finite maximal codes C over the alphabet A = {a, b} with C \cap a^* = a^p, for a prime number p. Let P, S in Z , with S = S_0 + S_1, supp(S_0) \subset a^* and supp(S_1) \subset a^*b supp(S_0). We prove that if (P,S) is a factorization for C then (P,S) is positive, that is P,S have coefficients 0,1, and we characterize the structure of these codes. As a consequence, we prove that if C is a finite maximal code such that each word in C has at most 4 occurrences of b's and a^p is in C, then each factorization for C is a positive factorization. We also discuss the structure of these codes. The obtained results show once again relations between (positive) factorizations and factorizations of cyclic groups

    Cosmological perturbations in kk-essence model

    Full text link
    Subhorizon approximation is often used in cosmological perturbation theory. In this paper, however, it is shown that the subhorizon approximation is not always a good approximation at least in case of kk-essence model. We also show that the sound speed given by kk-essence model exerts a huge influence on the time evolution of the matter density perturbation, and the future observations could clarify the differences between the Λ\LambdaCDM model and kk-essence model.Comment: 21 pages, sentences and equations are corrected, conclusions are changed a littl

    Black holes in scalar-tensor gravity

    Full text link
    Hawking has proven that black holes which are stationary as the endpoint of gravitational collapse in Brans--Dicke theory (without a potential) are no different than in general relativity. We extend this proof to the much more general class of scalar-tensor and f(R) gravity theories, without assuming any symmetries apart from stationarity.Comment: v1: 4 pages; v2: typos corrected, published versio

    Cosmological constraints on extended Galileon models

    Full text link
    The extended Galileon models possess tracker solutions with de Sitter attractors along which the dark energy equation of state is constant during the matter-dominated epoch, i.e. w_DE = -1-s, where s is a positive constant. Even with this phantom equation of state there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent. Using the observational data of the supernovae type Ia, the cosmic microwave background (CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at the background level and find that the parameter s is constrained to be s=0.034 (-0.034,+0.327) (95% CL) in the flat Universe. In order to break the degeneracy between the models we also study the evolution of cosmological density perturbations relevant to the large-scale structure (LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the model parameters, the LSS and the ISW effect is either positively or negatively correlated. It is then possible to constrain viable parameter spaces further from the observational data of the ISW-LSS cross-correlation as well as from the matter power spectrum.Comment: 17 pages, 9 figures, uses RevTeX4-

    Collimation of a spherical collisionless particles stream in Kerr space-time

    Full text link
    We examine the propagation of collisionless particles emitted from a spherical shell to infinity. The number distribution at infinity, calculated as a function of the polar angle, exhibits a small deviation from uniformity. The number of particles moving from the polar region toward the equatorial plane is slightly larger than that of particles in the opposite direction, for an emission radius >4.5M > 4.5M in extreme Kerr space-time. This means that the black hole spin exerts an anti-collimation effect on the particles stream propagating along the rotation axis. We also confirm this property in the weak field limit. The quadrupole moment of the central object produces a force toward the equatorial plane. For a smaller emission radius r<4.5Mr<4.5M, the absorption of particles into the black hole, the non-uniformity and/or the anisotropy of the emission distribution become much more important.Comment: 11 pages, 8 figures; accepted for publication in CQ

    Generalized Brans-Dicke theories

    Full text link
    In Brans-Dicke theory a non-linear self interaction of a scalar field allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the LCDM model.Comment: 14 pages, 4 figures, version to appear in JCA
    • …
    corecore