227 research outputs found

    On the general relativistic framework of the Sagnac effect

    Full text link
    The Sagnac effect is usually considered as being a relativistic effect produced in an interferometer when the device is rotating. General relativistic explanations are known and already widely explained in many papers. Such general relativistic approaches are founded on Einstein's equivalence principle (EEP), which states the equivalence between the gravitational "force" and the pseudo-force experienced by an observer in a non-inertial frame of reference, included a rotating observer. Typically, the authors consider the so-called Langevin-Landau-Lifschitz metric and the path of light is determined by null geodesics. This approach partially hides the physical meaning of the effect. It seems indeed that the light speed varies by c\pm\omega r in one or the other direction around the disk. In this paper, a slightly different general relativistic approach will be used. The different "gravitational field" acting on the beam splitter and on the two rays of light is analyzed. This different approach permits a better understanding of the physical meaning of the Sagnac effect.Comment: 9 pages, to appear in the European Physical Journal

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    On the quantization of the extremal Reissner-Nordstrom black hole

    Full text link
    Following Rosen's quantization rules, two of the Authors (CC and FF) recently described the Schwarzschild black hole (BH) formed after the gravitational collapse of a pressureless "star of dust" in terms of a "gravitational hydrogen atom". Here we generalize this approach to the gravitational collapse of a charged object, namely, to the geometry of a Reissner-Nordstrom BH (RNBH) and calculate the gravitational potential, the Schr\"odinger equation and the exact solutions of the energy levels of the gravitational collapse. By using the concept of BH effective state, previously introduced by one of us (CC), we describe the quantum gravitational potential, the mass spectrum and the energy spectrum for the extremal RNBH. The area spectrum derived from the mass spectrum finds agreement with a previous result by Bekenstein. The stability of these solutions, described with the Majorana approach to the Archaic Universe scenario, show the existence of oscillatory regimes or exponential damping for the evolution of a small perturbation from a stable state.Comment: 7 pages, to appear in Europhysics Letter

    Charged particle scattering near the horizon

    Full text link
    We study Maxwell theory, in the presence of charged scalar sources, near the black hole horizon in a partial wave basis. We derive the gauge field configuration that solves Maxwell equations in the near-horizon region of a Schwarzschild black hole when sourced by a charge density of a localised charged particle. This is the electromagnetic analog of the gravitational Dray-'t Hooft shockwave near the horizon. We explicitly calculate the S-matrix associated with this shockwave in the first quantised 1→11\rightarrow 1 formalism. We develop a theory for scalar QED near the horizon using which we compute the electromagnetic eikonal S-matrix from elastic 2→22\rightarrow 2 scattering of charged particles exchanging soft photons in the black hole eikonal limit. The resulting ladder resummation agrees perfectly with the result from the first quantised formalism, whereas the field-theoretic formulation allows for a computation of a wider range of amplitudes. As a demonstration, we explicitly compute sub-leading corrections that arise from four-vertices.Comment: 23 pages + appendices. v2: typos corrected, some clarifications added. v3: fixed an incorrect Feynman diagra

    Quantum oscillations in the black hole horizon

    Full text link
    By applying Rosen's quantization approach to the historical Oppenheimer and Snyder gravitational collapse and by setting the constraints for the formation of the Schwarzschild black hole (SBH), in a previous paper [1] two of the Authors (CC and FF) found the gravitational potential, the Schrodinger equation, the solution for the energy levels, the area quantum and the quantum representation of the ground state at the Planck scale of the SBH. Such results are consistent with previous ones in the literature. It was also shown that the traditional classical singularity in the core of the SBH is replaced by a quantum oscillator describing a non-singular two-particle system where the two components, named the "nucleus" and the "electron", strongly interact with each other through a quantum gravitational interaction. In agreement with the de Broglie hypothesis, the "electron" is interpreted in terms of the quantum oscillations of the BH horizon. In other words, the SBH should be the gravitational analogous of the hydrogen atom. In this paper, it is shown that these results allow us to compute the SBH entropy as a function of the BH principal quantum number in terms of Bekenstein-Hawking entropy and three sub-leading corrections. In addition, the coefficient of the formula of Bekenstein-Hawking entropy is reduced to a quarter of the traditional value. Then, it is shown that, by performing a correct rescaling of the energy levels, the semi-classical Bohr-like approach to BH quantum physics, previously developed by one of the Authors (CC), is consistent with the obtained results for large values of the BH principal quantum number. After this, Hawking radiation will be analysed by discussing its connection with the BH quantum structure. Finally, it is shown that the time evolution of the above mentioned system solves the BH information paradox.Comment: 29 pages.Comments are welcome. arXiv admin note: text overlap with arXiv:1912.0647
    • …
    corecore