17,584 research outputs found

    A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    Get PDF
    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis

    Remote sensing of tropical tropopause layer radiation balance using A-train measurements

    Get PDF
    Determining the level of zero net radiative heating (LZH) is critical to understanding parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration processes. Previous studies of the TTL radiative balance have focused on using radiosonde data, but remote sensing measurements from polar-orbiting satellites may provide the relevant horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, especially across the Pacific Ocean. CloudSat provides a considerable amount of vertical information about the distribution of cloud properties relevant to heating rate analysis. The ability of CloudSat measurements and ancillary information to constrain LZH is explored. We employ formal error propagation analysis for derived heating rate uncertainty given the CloudSat cloud property retrieval algorithms. Estimation of the LZH to within approximately 0.5 to 1 km is achievable with CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus. This can be remedied with the proper utilization of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar backscatter information. By utilizing an orbital simulation with the GISS data set, we explore the representativeness of non-cross-track scanning active sounders in terms of describing the LZH distribution. In order to supplement CloudSat, we explore the ability of Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to constrain LZH and find that these passive sounders are useful where the cloud top height does not exceed 7 km. The spatiotemporal distributions of LZH derived from CloudSat and CALIPSO measurements are presented which suggest that thin cirrus have a limited effect on LZH mean values but affect LZH variability

    The Fourth Positive System of Carbon Monoxide in the Hubble Space Telescope Spectra of Comets

    Full text link
    The rich structure of the Fourth Positive System (A-X) of carbon monoxide accounts for many of the spectral features seen in long slit HST-STIS observations of comets 153P/Ikeya-Zhang, C/2001 Q4 (NEAT), and C/2000 WM1 (LINEAR), as well as in the HST-GHRS spectrum of comet C/1996 B2 Hyakutake. A detailed CO fluorescence model is developed to derive the CO abundances in these comets by simultaneously fitting all of the observed A-X bands. The model includes the latest values for the oscillator strengths and state parameters, and accounts for optical depth effects due to line overlap and self-absorption. The model fits yield radial profiles of CO column density that are consistent with a predominantly native source for all the comets observed by STIS. The derived CO abundances relative to water in these comets span a wide range, from 0.44% for C/2000 WM1 (LINEAR), 7.2% for 153P/Ikeya-Zhang, 8.8% for C/2001 Q4 (NEAT) to 20.9% for C/1996 B2 (Hyakutake). The subtraction of the CO spectral features using this model leads to the first identification of a molecular hydrogen line pumped by solar HI Lyman-beta longward of 1200A in the spectrum of comet 153P/Ikeya-Zhang. (Abridged)Comment: 12 pages, 11 figures, ApJ accepte

    Quantum walks as a probe of structural anomalies in graphs

    Full text link
    We study how quantum walks can be used to find structural anomalies in graphs via several examples. Two of our examples are based on star graphs, graphs with a single central vertex to which the other vertices, which we call external vertices, are connected by edges. In the basic star graph, these are the only edges. If we now connect a subset of the external vertices to form a complete subgraph, a quantum walk can be used to find these vertices with a quantum speedup. Thus, under some circumstances, a quantum walk can be used to locate where the connectivity of a network changes. We also look at the case of two stars connected at one of their external vertices. A quantum walk can find the vertex shared by both graphs, again with a quantum speedup. This provides an example of using a quantum walk in order to find where two networks are connected. Finally, we use a quantum walk on a complete bipartite graph to find an extra edge that destroys the bipartite nature of the graph.Comment: 10 pages, 2 figure

    Rectification in Luttinger liquids

    Full text link
    We investigate the rectification of an ac bias in Luttinger liquids in the presence of an asymmetric potential (the ratchet effect). We show that strong repulsive electron interaction enhances the ratchet current in comparison with Fermi liquid systems, and the I-V curve is strongly asymmetric in the low-voltage regime even for a weak asymmetric potential. At higher voltages the ratchet current exhibits an oscillatory voltage dependence.Comment: 5 pages, Revte

    Electron heating at interplanetary shocks

    Get PDF
    Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures. T sub e (d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T sub e (d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T sub p (d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T sub e (d/u) and T sub p (d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons more efficiently than they heat the electrons

    Vortex Plasma in a Superconducting Film with Magnetic Dots

    Get PDF
    We consider a superconducting film, placed upon a magnetic dot array. Magnetic moments of the dots are normal to the film and randomly oriented. We determine how the concentration of the vortices in the film depends on the magnetic moment of a dot at low temperatures. The concentration of the vortices, bound to the dots, is proportional to the density of the dots and depends on the magnetization of a dot in a step-like way. The concentration of the unbound vortices oscillates about a value, proportional to the magnetic moment of the dots. The period of the oscillations is equal to the width of a step in the concentration of the bound vortices.Comment: RevTeX, 4 page
    corecore