12,782 research outputs found

    Nonequilibrium quantum phase transition in itinerant electron systems

    Full text link
    We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a non-zero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.Comment: Final version as accepted to Phys. Rev. Let

    Projective measurement in nuclear magnetic resonance

    Get PDF
    It is demonstrated that nuclear magnetic resonance experiments using pseudopure spin states can give possible outcomes of projective quantum measurement and probabilities of such outcomes. The physical system is a cluster of six dipolar-coupled nuclear spins of benzene in a liquid-crystalline matrix. For this system with the maximum total spin S=3, the results of measuring SXS_X are presented for the cases when the state of the system is one of the eigenstates of SZS_Z.Comment: 9 pages incluing 3 figure

    Phyllosilicate Transitions in Ferromagnesian Soils: Short-Range Order Materials and Smectites Dominate Secondary Phases

    Get PDF
    Analyses of X-ray diffraction (XRD) patterns taken by the CheMin instrument on the Curiosity Rover in Gale crater have documented the presence of clay minerals interpreted as smectites and a suite of amorphous to short-range order materials termed X-ray amorphous materials. These X-ray amorphous materials are commonly ironrich and aluminum poor and likely some of them are weathering products rather than primary glasses due to the presence of volatiles. Outstanding questions remain regarding the chemical composition and mineral structure of these X-ray amorphous materials and the smectites present at Gale crater and what they indicate about environmental conditions during their formation. To gain a better understanding of the mineral transitions that occur within ferromagnesian parent materials, we have investigated the development of secondary clay minerals and shortrange order materials in two soil chronosequences with varying climates developing on ultramafic bedrock. Field Sites: We investigated soil weathering within two field locations, the Klamath Mountains of Northern California, and the Tablelands of Newfoundland, Canada. Both sites possess age dated or correlated recently deglaciated soils and undated but substantially older soils. In the Klamath mountains the Trinity Ultramafic Body was deglaciated roughly 15,000 years bp while in the Tablelands a moraine was dated to about 17,600 years bp. The Klamath Mountains feature a seasonally wet and dry climate while the Tablelands are wet year-round with saturated soil conditions observed during sampling and standing water observed within 3 of 4 soil pit sampling locations

    On Some Positivity Properties of the Interquark Potential in QCD

    Get PDF
    We prove that the Fourier transform of the exponential e^{-\b V(R)} of the {\bf static} interquark potential in QCD is positive. It has been shown by Eliott Lieb some time ago that this property allows in the same limit of static spin independent potential proving certain mass relation between baryons with different quark flavors.Comment: 6 pages, latex with one postscript figur

    Exact Diagonalisation of The XY-Hamiltonian of Open Linear Chains with Periodic Coupling Constants and Its Application to Dynamics of One-Dimensional Spin Systems

    Full text link
    A new method of diagonalisation of the XY-Hamiltonian of inhomogeneous open linear chains with periodic (in space) changing Larmor frequencies and coupling constants is developed. As an example of application, multiple quantum dynamics of an inhomogeneous chain consisting of 1001 spins is investigated. Intensities of multiple quantum coherences are calculated for arbitrary inhomogeneous chains in the approximation of the next nearest interactions. {\it Key words:} linear spin chain, nearest--neighbour approximation, three--diagonal matrices, diagonalisation, fermions, multiple--quantum NMR, multiple--quantum coherence, intensities of multiple--quantum coherences. {\it PACS numbers:} 05.30.-d; 76.20.+qComment: 21 pages + 1 figure (to download separately via ps-format

    Rectification in one--dimensional electronic systems

    Full text link
    Asymmetric current--voltage (I(V)I(V)) curves, known as the diode or rectification effect, in one--dimensional electronic conductors can have their origin from scattering off a single asymmetric impurity in the system. We investigate this effect in the framework of the Tomonaga--Luttinger model for electrons with spin. We show that electron interactions strongly enhance the diode effect and lead to a pronounced current rectification even if the impurity potential is weak. For strongly interacting electrons and not too small voltages, the rectification current, Ir=[I(V)+I(−V)]/2I_r = [I(V)+I(-V)]/2, measuring the asymmetry in the current--voltage curve, has a power--law dependence on the voltage with a negative exponent, Ir∼V−∣z∣I_r \sim V^{-|z|}, leading to a bump in the current--voltage curve.Comment: 9 pages; 3 figure

    Dynamical Mass Generation of Composite Dirac Fermions and Fractional Quantum Hall Effects near Charge Neutrality in Graphene

    Full text link
    We develop a composite Dirac fermion theory for the fractional quantum Hall effects (QHE) near charge neutrality in graphene. We show that the interactions between the composite Dirac fermions lead to dynamical mass generation through exciton condensation. The four-fold spin-valley degeneracy is fully lifted due to the mass generation and the exchange effects such that the odd-denominator fractional QHE observed in the vicinity of charge neutrality can be understood in terms of the integer QHE of the composite Dirac fermions. At the filling factor ν=1/2\nu=1/2, we show that the massive composite Dirac fermion liquid is unstable against chiral p-wave pairing for weak Coulomb interactions and the ground state is a paired nonabelian state described by the Moore-Read Pfaffian in the long wavelength limit.Comment: Extended, published version, 9 pages, 3 figure

    Statistical Arbitrage Mining for Display Advertising

    Full text link
    We study and formulate arbitrage in display advertising. Real-Time Bidding (RTB) mimics stock spot exchanges and utilises computers to algorithmically buy display ads per impression via a real-time auction. Despite the new automation, the ad markets are still informationally inefficient due to the heavily fragmented marketplaces. Two display impressions with similar or identical effectiveness (e.g., measured by conversion or click-through rates for a targeted audience) may sell for quite different prices at different market segments or pricing schemes. In this paper, we propose a novel data mining paradigm called Statistical Arbitrage Mining (SAM) focusing on mining and exploiting price discrepancies between two pricing schemes. In essence, our SAMer is a meta-bidder that hedges advertisers' risk between CPA (cost per action)-based campaigns and CPM (cost per mille impressions)-based ad inventories; it statistically assesses the potential profit and cost for an incoming CPM bid request against a portfolio of CPA campaigns based on the estimated conversion rate, bid landscape and other statistics learned from historical data. In SAM, (i) functional optimisation is utilised to seek for optimal bidding to maximise the expected arbitrage net profit, and (ii) a portfolio-based risk management solution is leveraged to reallocate bid volume and budget across the set of campaigns to make a risk and return trade-off. We propose to jointly optimise both components in an EM fashion with high efficiency to help the meta-bidder successfully catch the transient statistical arbitrage opportunities in RTB. Both the offline experiments on a real-world large-scale dataset and online A/B tests on a commercial platform demonstrate the effectiveness of our proposed solution in exploiting arbitrage in various model settings and market environments.Comment: In the proceedings of the 21st ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2015
    • …
    corecore