46 research outputs found

    Exploring the mechanisms of diverging mechanical and water stability in macro- and microaggregates

    Get PDF
    Background: Soil stability is often evaluated using either mechanical or hydraulic stress. The few studies that use both approaches suggest that these two types of stability behave differently. Aims: Our aim was to explore the mechanisms of aggregate stability regarding mechanical and water stability at the macro- and microscale, among other things, the effect of differing pore structure and soil organic matter content. Methods: Samples were taken from two adjacent plots that were expected to differ in stability due to land use, that is, cropped versus bare fallow (BF). The stability of dry-separated macroaggregates (8–16 mm) and microaggregates (53–250 µm) was determined via wet sieving and unconfined uniaxial compression tests. To explore the mechanisms of stability, 3D pore characteristics were analyzed with microtomography scans. Furthermore, the contents of carbon and exchangeable polyvalent cations as well as contact angles were determined. Results: Water stability of macroaggregates was much higher in the cropped plot (geometric mean diameter 0.65–2.37 mm [cropped] vs. 0.31–0.56 mm [BF]), while mechanical stability was very similar (median work 17.3 [cropped] and 17.5 N mm [BF]). The two size fractions behaved similarly regarding both types of stability, with more pronounced differences in macroaggregates. Several soil characteristics, like carbon, exchangeable calcium, and higher connectivity of pores to the aggregate exterior, contributed to water stability. Regarding mechanical stability, the destabilizing effect of lower carbon content and exchangeable calcium in the BF plot was counterbalanced by a lower porosity. Conclusions: Mechanical and water stability behaved differently in the two plots due to the different deformation mechanisms

    Microplastics effects on wettability, pore sizes and saturated hydraulic conductivity of a loess topsoil

    Get PDF
    Environmental contamination with microplastics (MP, 0.1 µm – 5 mm diameter) potentially threatens various soil functions and agricultural production. In this study we evaluated the effects of MP on physical soil parameters (saturated hydraulic conductivity, water retention and water repellency) at MP concentrations (0.5 to 2 % w/w) that have been reported for farmland soils. Polyethylene terephthalate (PET) and polystyrene (PS) of three sizes ranging between 0.5 and 3 mm diameter, were mixed with loess topsoil material from an agriculturally used Luvisol. Results show that increasing MP concentration decreased the saturated hydraulic conductivity (ksat) compared to the control soil (without MP), irrespective of MP type. The highest reduction of ksat was found for the highest concentration (2 %) and the largest size MP (approx. 3 mm diameter). Compared to the control, MP addition significantly decreased soil water retention with increasing concentration. In contrast, air capacity was increased with MP addition where strongest effect was found for largest PET particles at the highest concentration. Soil water repellency (measured as Wilhelmy Plate contact angles) was increased at a concentration of 2 % and for MP sizes > 1 mm, while no effect was observed for lower concentrations and smaller MP. In conclusion, MP type, size, and concentration did affect key soil physical parameters, likely to negatively influence plant growth in contaminated soils

    Complementary effects of sorption and biochemical processing of dissolved organic matter for emerging structure formation controlled by soil texture

    Get PDF
    Background: Percolating dissolved organic matter (DOM) from the topsoil is considered the main source of subsoil organic carbon (OC) in temperate soils, but knowledge about its influence on OC storage and structure-forming processes is limited. Aims: We conducted a 30-day incubation experiment with artificial soils to study the effects of percolating DOM and soil texture on OC turnover and initial structure formation. Methods: Artificial soils with contrasting texture, but identical mineral composition, were used to mimic subsoil conditions, where mineral surfaces free of OM come into contact with percolating DOM. After the incubation, we assessed the solution exchange, OM covers on minerals, microbial community and OC turnover, and aggregate formation and stability. Results: A higher sand content caused a lower porosity, accompanied by a lower moisture content. In contrast, the OC retention (21% of the OC input), microbial activity, and community size were unaffected by soil texture. The OM covered 10% of the mineral surfaces within an otherwise OC-free mineral matrix. The formation of large, water-stable aggregates occurred in all soils, but was pronounced in the clay-rich soils (58% mass contribution), which also supported a higher mechanical stability of the aggregates. Conclusions: The initial retention and microbial mineralization of DOM are decoupled from pore sizes and soil solution exchange but are driven by the mineral composition and OC input. The biochemical processing of the percolating DOM can induce large aggregates. Here, the presence of fine mineral particles enhances the formation and mechanical stability of the aggregates, irrespective of their surface charge or sorptive properties

    Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes

    Get PDF
    Biocrusts are biological communities that occupy the soil surface, accumulate organic matter and mineral particles and hence strongly affect the properties of the soils they cover. Moreover, by affecting water repellency, biocrusts may cause a preferential infiltration of rainwater, with a high impact on the formation of local water pathways, especially for sand dunes. The aim of this study is to shed light on the connections between water repellency and pH, carbonate and organic matter content in two dune ecosystems with different biocrust types. For this, we used contact angle measurements, gas volumetric carbonate determination and organic matter characterization via FT-IR and TOF-SIMS. In both ecosystems, moss-dominated biocrusts showed higher water repellency and higher amounts of organic matter compared to algal or cyanobacterial biocrusts. Surprisingly, the biocrusts of the two dune systems did not show differences in organic matter composition or organic coatings of the mineral grains. Biocrusts on the more acidic dunes showed a significantly higher level of water repellency as compared to higher carbonate containing dunes. We conclude that the driving factor for the increase in water repellency between cyanobacterial and moss-dominated biocrusts within one study site is the content of organic matter. However, when comparing the different study sites, we found that higher amounts of carbonate reduced biocrust water repellency

    Unsichtbar wirksam : Bodenmikroaggregate: kleine Strukturen mit großer Wirkung

    Get PDF
    In der Bodenforschung spielen Mikroaggregate eine besondere Rolle. Sie haben eine komplexe innere Architektur in der mikrobielle, biogeochemische und physikalische Prozesse in Wechselwirkung stehen, die bisher noch sehr wenig untersucht, aber von fundamentaler Bedeutung für die Funktionsfähigkeit von Böden sind. Wissenschaftler vom Institut für Bodenkunde versuchen daher, einen Beitrag zum mechanistischen Verständnis der Bildung und Funktion von Mikroaggregaten zu leisten

    Biological soil crusts decrease infiltration but increase erosion resistance in a human-disturbed tropical dry forest

    Get PDF
    Under continuous human disturbance, regeneration is the basis for biodiversity persistence and ecosystem service provision. In tropical dry forests, edaphic ecosystem engineering by biological soil crusts (biocrusts) could impact regeneration by influencing erosion control and soil water and nutrient fluxes, which impact landscape hydrology, geomorphology, and ecosystem functioning. This study investigated the effect of cyanobacteria-dominated biocrusts on water infiltration and aggregate stability in a human-modified landscape of the Caatinga dry forest (NE Brazil), a system characterized by high levels of forest degradation and increasing aridity. By trapping dust and swelling of cyanobacterial filaments, biocrusts can seal soil surfaces and slow down infiltration, which potentially induces erosion. To quantify hydraulic properties and erosion control, we used minidisc-infiltrometry, raindrop-simulation, and wet sieving at two sites with contrasting disturbance levels: an active cashew plantation and an abandoned field experiencing forest regeneration, both characterized by sandy soils. Under disturbance, biocrusts had a stronger negative impact on infiltration (reduction by 42% vs. 37% during regeneration), although biocrusts under regenerating conditions had the lowest absolute sorptivity (0.042 ± 0.02 cm s−1/2) and unsaturated hydraulic conductivity (0.0015 ± 0.0008 cm s−1), with a doubled water repellency. Biocrusts provided high soil aggregate stability although stability increased considerably with progression of biocrust succession (raindrop simulation disturbed: 0.19 ± 0.22 J vs. regenerating: 0.54 ± 0.22 J). The formation of stable aggregates by early successional biocrusts on sandy soils suggests protection of dry forest soils even on the worst land use/soil degradation scenario with a high soil erosion risk. Our results confirm that biocrusts covering bare interspaces between vascular plants in human-modified landscapes play an important role in surface water availability and erosion control. Biocrusts have the potential to reduce land degradation, but their associated ecosystem services like erosion protection, can be impaired by disturbance. Considering an average biocrust coverage of 8.1% of the Caatinga landscapes, further research should aim to quantify the contribution of biocrusts to forest recovery to fully understand the role they play in the functioning of this poorly explored ecosystem

    Microplastics in agroecosystems: A review of effects on soil biota and key soil functions

    Get PDF
    Contamination of soils in agroecosystems with microplastics (MPs) is of increasing concern. The contamination of the environment/farmland soils with MPs (1 µm to 5 mm sized particles) and nanoplastics (NPs; <1 µm sized particles) is causing numerous effects on ecological soil functions and human health. MPs enter the soil via several sources, either from intentional plastic use (e.g., plastic mulch, plastic greenhouses, plastic-coated products) or indirectly from the input of sewage sludge, compost, or irrigation water that is contaminated with plastic. Once in the soil, plastic debris can have various impacts such as changes in soil functions and physicochemical properties and it affects soil organisms due to its toxic behavior. This review paper describes the different effects of plastic waste to understand the consequences for agricultural productivity. Furthermore, we identify knowledge gaps and highlight the required approaches, indicating future research directions on sources, transport, and fate of MPs in soils to improve our understanding of various unspecified abiotic and biotic impacts of MP pollution in agroecosystems

    Correction to: Role of root hair elongation in rhizosheath aggregation and in the carbon flow into the soil

    Get PDF
    The above article’s initial published version contained an error regarding the co-author Vincent J. M. N. L. Felde’s affiliation. Instead of “Institute of Soil Science and Soil Conservation, Justus Liebig University Giessen, Giessen, Germany”, the right affiliation should have been “Institute of Soil Science, Leibniz University of Hannover, Germany”. The original article has been corrected

    Lichens Bite the Dust : A Bioweathering Scenario in the Atacama Desert

    Get PDF
    Bioweathering mediated by microorganisms plays a significant role in biogeochemical cycles on global scales over geological timescales. Single processes induced by specific taxa have been described but could rarely be demonstrated for complex communities that dominate whole landscapes. The recently discovered grit crust of the coastal Atacama Desert, which is a transitional community between a cryptogamic ground cover and a rock-bound lithic assemblage, offers the unique chance to elucidate various bioweathering processes that occur simultaneously. Here, we present a bioweathering scenario of this biocenosis including processes such as penetration of the lithomatrix, microbial responses to wet-dry cycles, alkalinolysis, enzyme activity, and mineral re-localization. Frequently occurring fog, for example, led to a volume increase of microorganisms and the lithomatrix. This, together with pH shifts and dust accumulation, consequently results in biophysical breakdown and the formation of a terrestrial protopedon, an initial stage of pedogenesis fueled by the grit crust. © 2020 The Author(s
    corecore