4 research outputs found

    The human arm as a redundant manipulator: the control of path and joint angles

    Get PDF
    Cruse H, Brüwer M. The human arm as a redundant manipulator: the control of path and joint angles. Biological cybernetics. 1987;57(1-2):137-144.The movements studied involved moving the tip of a pointer attached to the hand from a given starting point to a given end point in a horizontal plane. Three joints — the shoulder, elbow and wrist —were free to move. Thus the system represented a redundant manipulator. The coordination of the movements of the three joints was recorded and analyzed. The study concerned how the joints are controlled during a movement. The results are used to evaluate several current hypotheses for motor control. Basically, the incremental changes are calculated so as to move the tip of the manipulator along a straight line in the workspace. The values of the individual joints seem to be determined as follows. Starting from the initial values the incremental changes in the three joint angles represent a compromise between two criteria: 1) the amount of the angular change should be about the same in the three joints, and 2) the angular changes should minimize the total cost of the arm position as determined by cost functions defined for each joint as a function of angle. By itself, this mechanism would produce strongly curved trajectories in joint space which could include additional acceleration and deceleration in a joint. These are reduced by the influence of a third criterion which fits with the mass-spring hypothesis. Thus the path is calculated as a compromise between a straight line in workspace and a straight line in joint space. The latter can produce curved paths in the workspace such as were actually found in the experiments. A model calculation shows that these hypotheses can qualitatively describe the experimental findings

    The loyal dissident: N.A. Bernstein and the double-edged sword of Stalinism

    Get PDF
    Nikolai Aleksandrovich Bernstein (1896-1966) studied movement in order to understand the brain. Contra Pavlov, he saw movements (thus, the brain) as coordinated. For Bernstein, the cortex was a stochastic device; the more cortexes an animal species has, the more variable its actions will be. Actions are planned with a stochastic "model of the future," and relevance is established through blind mathematical search. In the 1950 neoPavlovian affair, he came under strong attack and had to stop experimenting. It is argued that the consistency of his work derived both from both dialectical materialism and the relentless attacks of the neoPavlovians. Copyright © Taylor & Francis Group, LLC
    corecore