39 research outputs found

    Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis.

    Get PDF
    There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In this paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress (WSS) gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and WSS between P5 and P6: (i) the measured reduction in typical vessel diameter between both time points and (ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain

    New insight into kinetics behavor of the structural formation process in Agar gelation

    Full text link
    A time-resolved experimental study on the kinetics and relaxation of the structural formation process in gelling Agar-water solutions was carried out using our custom-built torsion resonator. The study was based on measurements of three naturally cooled solutions with agar concentrations of 0.75%, 1.0% and 2.0% w/w. It was found that the natural-cooling agar gelation process could be divided into three stages, sol stage (Stage I), gelation zone (Stage II) and gel stage (Stage III), based on the time/temperature evolutions of the structural development rate (SDR). An interesting fluctuant decaying behavior of SDR was observed in Stage II and III, indicative of a sum of multiple relaxation processes and well described by a multiple-order Gaussisn-like equation: . More interestingly, the temperature dependences of the fitted values of Wn in Stage II and Stage III were found to follow the different Arrhenius laws, with different activation energies of EaII= 39-74 KJ/mol and EaIII~7.0 KJ/mol. The two different Arrhenius-like behaviors respectively suggest that dispersions in Stage II be attributed to the relaxation of the self-assembly of agar molecules or the growth of junction zones en route to gelation, in which the formation or fission of hydrogen bonding interactions plays an important role; and that dispersions in Stage III be attributed to the relaxation dynamics of water released from various size domains close to the domain of the viscous flow of water during the syneresis process.Comment: 24 pages, 4 figures, 1 tabl

    Diabetic retinopathy: current and future methods for early screening from a retinal hemodynamic and geometric approach

    Get PDF
    Diabetic retinopathy (DR) is a major disease and is the number one cause of blindness in the UK. In England alone, 4200 new cases appear every year and 1280 lead to blindness. DR is a result of diabetes mellitus, which affects the retina of the eye and specifically the vessel structure. Elevated levels of glucose cause a malfunction in the cell structure, which affects the vessel wall and, in severe conditions, leads to their breakage. Much research has been carried out on detecting the different stages of DR but not enough versatile research has been carried out on the detection of early DR before the appearance of any lesions. In this review, the authors approach the topic from the functional side of the human eye and how hemodynamic factors that are impaired by diabetes affect the vascular structur
    corecore