219 research outputs found

    Comparison of Binaural RTF-Vector-Based Direction of Arrival Estimation Methods Exploiting an External Microphone

    Full text link
    In this paper we consider a binaural hearing aid setup, where in addition to the head-mounted microphones an external microphone is available. For this setup, we investigate the performance of several relative transfer function (RTF) vector estimation methods to estimate the direction of arrival(DOA) of the target speaker in a noisy and reverberant acoustic environment. More in particular, we consider the state-of-the-art covariance whitening (CW) and covariance subtraction (CS) methods, either incorporating the external microphone or not, and the recently proposed spatial coherence (SC) method, requiring the external microphone. To estimate the DOA from the estimated RTF vector, we propose to minimize the frequency-averaged Hermitian angle between the estimated head-mounted RTF vector and a database of prototype head-mounted RTF vectors. Experimental results with stationary and moving speech sources in a reverberant environment with diffuse-like noise show that the SC method outperforms the CS method and yields a similar DOA estimation accuracy as the CW method at a lower computational complexity.Comment: Submitted to EUSIPCO 202

    Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome.

    Get PDF
    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression.The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement No. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/ 2007–2013). The Behavioural and Clinical Neuroscience Institute is co-funded by the Medical Research Council and the Df(h22q11)/+ and the Wellcome Trust.This is the final version of the article. It first appeared from OUP at http://dx.doi.org/10.1093/cercor/bhw229

    A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission

    Get PDF
    Abstract 1q21.1 hemizygous microdeletion is a copy number variant leading to eightfold increased risk of schizophrenia. In order to investigate biological alterations induced by this microdeletion, we generated a novel mouse model (Df(h1q21)/+) and characterized it in a broad test battery focusing on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1 receptor agonist SKF-81297 revealed no differences in induced locomotor activity compared to wild-type mice, but Df(h1q21)/+ mice showed increased sensitivity to the DA D2 receptor agonist quinpirole and the D1/D2 agonist apomorphine. Electrophysiological characterization of DA neuron firing in the ventral tegmental area revealed more spontaneously active DA neurons and increased firing variability in Df(h1q21)/+ mice, and decreased feedback reduction of DA neuron firing in response to amphetamine. In a range of other assays, Df(h1q21)/+ mice showed no difference from wild-type mice: gross brain morphology and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced head-to tail length, which is reminiscent of the short stature reported in humans with 1q21.1 deletion. With aspects of both construct and face validity, the Df(h1q21)/+ model may be used to gain insight into schizophrenia-relevant alterations in dopaminergic transmission

    Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 micro-deletion syndrome – a study in male mice

    Get PDF
    Background: The hemizygous 22q11.2 micro-deletion is a common copy number variant in humans. The deletion confers high risk of neurodevelopmental disorders including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. Methods: We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on the most comprehensive study undertaken in 22q11.2DS models. The study was conducted in male mice. Results: We found elevated post-pubertal NMDA receptor antagonist induced hyper-locomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR was resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal (DStr) elevations of the dopamine metabolite DOPAC and increased DStr expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. Limitations: The 22q11.2 micro-deletion has incomplete penetrance in humans and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors which may unmask latent psychopathology. Conclusion: The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the aetiology of schizophrenia and other psychiatric disorders associated with the 22q11DS.The research leading to these results was conducted as part of NEWMEDS and received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement n° 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). This work was further supported by grants from the Danish Advanced Technology Foundation (File no. 001-2009-2) and by the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)

    The schizophrenia associated BRD1 gene regulates behavior, neurotransmission, and expression of schizophrenia risk enriched gene sets in mice

    Get PDF
    BackgroundThe schizophrenia-associated BRD1 gene encodes a transcriptional regulator whose comprehensive chromatin interactome is enriched with schizophrenia risk genes. However, the biology underlying the disease association of BRD1 remains speculative.MethodsThis study assessed the transcriptional drive of a schizophrenia-associated BRD1 risk variant in vitro. Accordingly, to examine the effects of reduced Brd1 expression, we generated a genetically modified Brd1+/- mouse and subjected it to behavioral, electrophysiological, molecular, and integrative genomic analyses with focus on schizophrenia-relevant parameters.ResultsBrd1+/- mice displayed cerebral histone H3K14 hypo-acetylation and a broad range of behavioral changes with translational relevance to schizophrenia. These behaviors were accompanied by striatal dopamine/serotonin abnormalities and cortical excitation-inhibition imbalances involving loss of parvalbumin immunoreactive interneurons. RNAseq analyses of cortical and striatal micropunches from Brd1+/- and wild-type mice revealed differential expression of genes enriched for schizophrenia risk including several schizophrenia GWAS risk genes (e.g. calcium channel subunits (Cacna1c and Cacnb2), cholinergic muscarinic receptor 4 (Chrm4), dopamine receptor D2 (Drd2), and transcription factor 4 (Tcf4)). Integrative analyses further found differentially expressed genes to cluster in functional networks and canonical pathways associated with mental illness and molecular signaling processes (e.g. glutamatergic, monaminergic, calcium, cAMP, DARPP-32, and CREB signaling).ConclusionsOur study bridges the gap between genetic association and pathogenic effects and yields novel insights into the unfolding molecular changes in the brain of a new schizophrenia model that incorporates genetic risk at three levels: allelic, chromatin interactomic, and brain transcriptomic

    Substituent effects on the in vitro and in vivo genotoxicity of 4-aminobiphenyl and 4-aminostilbene derivatives

    Full text link
    4-Amino-4'-substituted biphenyls and 4-aminostilbenes substituted in the 3' or 4' position were studied for their in vitro and in vivo genotoxicity. The in vitro mutagenicity of the biphenyls with and without S9 activation was established with Salmonella strains TA98 and TA100 and that of the stilbenes with the same strains plus TA98/1,8-DNP6. The in vivo genotoxicity assay with both series of compounds was for chromosomal aberrations in the bone-marrow cells of mice following intraperitoneal administration of the chemicals. Hammett values of substituents, partition coefficients and frontier orbital energies (ELUMO and EHOMO) of the compounds were used for correlations with mutagenicity. The Salmonella mutagenicity in TA98 and TA98/1,8-DNP6 with S9 was correlated to Hammett [sigma]+ values for the 4-aminostilbene substituents, showing a strong trend of increasing mutagenicity with an increase in the electron-withdrawing capability of the substituent. Hydrophobicity of the stilbenes, however, had little effect on their relative mutagenicity. The 4-aminobiphenyls showed a correlation between their mutagenicity and Hammett [sigma]+ values of their 4'-substituents in stain TA98 with S9, although the trend was not as strong as for the stilbenes. But unlike the stilbenes, TA98 mutagenicity of the biphenyls could also be correlated to hydrophobicity, and structure-activity correlations for the biphenyls was substantially improved when both [sigma]+ and hydrophobicity data were included. For strain TA100 with S9, little correlation was found between mutagenicity of the stilbenes and any of, the parameters. However, a limited correlation did exist between the mutagenicity of the biphenyls and their hydrophobicity. There was also limited correlations of the mutagenicity for the stilbenes in TA98 and TA98/1,8-DNP6 with S9 to ELUMO or EHOMO. The in vivo genotoxicity results for the biphenyls and stilbenes could not be correlated to electronic effects as for the in vitro results, nor could they be explained by hydrophobicity. However, it is interesting to note that 3'-substituted 4-aminostilbenes were all substantially more genotoxic in vivo than their corresponding 4'-substituted counterparts. The most genotoxic compound in vivo in either series was 4-aminostilbene which would not have been predicted from the in vitro results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31865/1/0000815.pd

    L-lysine as adjunctive treatment in patients with schizophrenia: a single-blinded, randomized, cross-over pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accumulating evidence suggests that the brain's nitric oxide (NO) signalling system may be involved in the pathophysiology of schizophrenia and could thus constitute a novel treatment target. The study was designed to investigate the benefit of L-lysine, an amino acid that interferes with NO production, as an add-on treatment for schizophrenia.</p> <p>Methods</p> <p>L-lysine, 6 g/day, was administered to 10 patients with schizophrenia as an adjunctive to their conventional antipsychotic medication. The study was designed as a single-blinded, cross-over study where patients were randomly assigned to initial treatment with either L-lysine or placebo and screened at baseline, after four weeks when treatment was crossed over, and after eight weeks.</p> <p>Results</p> <p>L-lysine treatment caused a significant increase in blood concentration of L-lysine and was well tolerated. A significant decrease in positive symptom severity, measured by the Positive And Negative Syndrome Scale (PANSS), was detected. A certain decrease in score was also observed during placebo treatment and the effects on PANSS could not unequivocally be assigned to the L-lysine treatment. Furthermore, performance on the Wisconsin Card Sorting Test was significantly improved compared to baseline, an effect probably biased by training. Subjective reports from three of the patients indicated decreased symptom severity and enhanced cognitive functioning.</p> <p>Conclusions</p> <p>Four-week L-lysine treatment of 6 g/day caused a significant increase in blood concentration of L-lysine that was well tolerated. Patients showed a significant decrease in positive symptoms as assessed by PANSS in addition to self-reported symptom improvement by three patients. The NO-signalling pathway is an interesting, potentially new treatment target for schizophrenia; however, the effects of L-lysine need further evaluation to decide the amino acid's potentially beneficial effects on symptom severity in schizophrenia.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00996242">NCT00996242</a></p
    • …
    corecore