218 research outputs found

    Welcome to Energy Materials and Devices

    Get PDF

    Effect of sulfur on enhancing nitrogen-doping and magnetic properties of carbon nanotubes

    Get PDF
    Sulfur (S) is introduced as an additive in the growth atmosphere of carbon nanotubes (CNTs) in the range of 940-1020°C. CNT products with distorted sidewalls can be obtained by S-assisted growth. Moreover, many fascinating CNT structures can also be found in samples grown with S addition, such as bamboo-like CNTs, twisted CNTs, arborization-like CNTs, and bead-like CNTs. Compared with CNTs grown without S, more nitrogen-doping content is achieved in CNTs with S addition, which is beneficial for the properties and applications of nitrogen-doped CNTs. In addition, S can also enhance the encapsulation of ferromagnetic materials and thus improve the soft magnetic properties of CNTs, which is favorable to the applications of CNTs in the electromagnetic wave-absorbing and magnetic data storage areas

    Hydrothermal Synthesis of Iodine-Doped Nanoplates with Enhanced Visible and Ultraviolet-Induced Photocatalytic Activities

    Get PDF
    The iodine-doped Bi2WO6 (I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0 and were coadsorbed on the defect surface of Bi2WO6 in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies

    Sol-Gel-Hydrothermal Synthesis of the Heterostructured TiO

    Get PDF
    The heterostructured TiO2/N-Bi2WO6 composites were prepared by a facile sol-gel-hydrothermal method. The phase structures, morphologies, and optical properties of the samples were characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities for rhodamine B of the as-prepared products were measured under visible and ultraviolet light irradiation at room temperature. The TiO2/N-Bi2WO6 composites exhibited much higher photocatalytic performances than TiO2 as well as Bi2WO6. The enhancement in the visible light photocatalytic performance of the TiO2/N-Bi2WO6 composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers

    High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage

    Full text link
    © 2019, © 2019, The Author(s). Rechargeable aqueous zinc-ion hybrid capacitors and zinc-ion batteries are promising safe energy storage systems. In this study, amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+ storage based on a pseudocapacitive storage mechanism. In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte, the RuO2·H2O cathode can reversibly store Zn2+ in a voltage window of 0.4–1.6 V (vs. Zn/Zn2+), delivering a high discharge capacity of 122 mAh g−1. In particular, the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg−1 and a high energy density of 82 Wh kg−1. Besides, the zinc-ion hybrid capacitors demonstrate an ultralong cycle life (over 10,000 charge/discharge cycles). The kinetic analysis elucidates that the ultrafast Zn2+ storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions. This work could greatly facilitate the development of high-power and safe electrochemical energy storage.[Figure not available: see fulltext.]

    Pedestrian Crossing Action Recognition and Trajectory Prediction with 3D Human Keypoints

    Full text link
    Accurate understanding and prediction of human behaviors are critical prerequisites for autonomous vehicles, especially in highly dynamic and interactive scenarios such as intersections in dense urban areas. In this work, we aim at identifying crossing pedestrians and predicting their future trajectories. To achieve these goals, we not only need the context information of road geometry and other traffic participants but also need fine-grained information of the human pose, motion and activity, which can be inferred from human keypoints. In this paper, we propose a novel multi-task learning framework for pedestrian crossing action recognition and trajectory prediction, which utilizes 3D human keypoints extracted from raw sensor data to capture rich information on human pose and activity. Moreover, we propose to apply two auxiliary tasks and contrastive learning to enable auxiliary supervisions to improve the learned keypoints representation, which further enhances the performance of major tasks. We validate our approach on a large-scale in-house dataset, as well as a public benchmark dataset, and show that our approach achieves state-of-the-art performance on a wide range of evaluation metrics. The effectiveness of each model component is validated in a detailed ablation study.Comment: ICRA 202

    Quantum chemical calculation study on the thermal decomposition of electrolyte during lithium-ion battery thermal runaway

    Get PDF
    Understanding the behavior of lithium-ion battery electrolytes during thermal runaway is essential for designing safer batteries. However, current reports on electrolyte decomposition behaviors often focus on reactions with electrode materials. Herein we use quantum chemical calculations to develop a model for the thermal decomposition mechanism of electrolytes under both electrolyte and ambient atmosphere conditions. The thermal stability is found to be associated with the dielectric constants of electrolyte constituents. Within the electrolyte, the solvation effects between molecules increase electrolyte stability, making thermal decomposition a more difficult process. Furthermore, Li+ is observed to facilitate electrolyte thermal decomposition, as the energy required for the thermal decomposition reactions of molecules decreases when they are bonded with Li+. It is hoped that this study will offer a theoretical basis for understanding the complex reactions occurring during thermal runaway events

    Efficient single-molecular white-light emission for iridium-based photoluminescent and electroluminescent white OLEDs

    Get PDF
    The white organic light-emitting diode has become as a new class of emerging solid-state lighting sources due to its advantage of warm, pure white light emission, flexible lighting, and environmentally friendly indoor lighting. Here, we report three rationally designed cyclometalated [3 + 2+1] iridium(Ⅲ) complexes that emit white emission simultaneously from phosphorescent blue and yellow in the solid-state thin film. The blue GaN-based solid-state white light-emitting diodes with iridium(Ⅲ) complexes as a color converter show a color rendering index of 84.4 and International Commission on Illumination (CIE) coordinates of (0.30, 0.33). In addition, the vacuum-deposited organic light-emitting diode device exhibits a low turn-on voltage of 3.0 V and a maximum luminance (Lmax) of 335 cd m−2 with CIE coordinate of (0.31, 0.33), reaching standard naturally warm white light

    Superstructured carbon materials: design and energy applications

    Get PDF
    Carbon materials are key components in energy storage and conversion devices and most directly impact device performance. The need for advanced carbon materials has become more pressing with the increasing demand for high-performance energy conversion and storage facilities. Nonetheless, realizing significant performance improvements across devices remains challenging because of the difficulties in controlling irregularly organized microstructures and the specific carbon structures concerned. With the aim of realizing devisable structures, adjustable functions, and performance breakthroughs, this review proposes the concept of superstructured carbons. In fact, superstructured carbons are a category of carbon-based materials characterized by precisely built pores, networks, and interfaces. This unique category meets the particular functional demands of high-performance devices and exceeds the rigid structure of traditional carbons. In the context of these superstructured carbons, we present methods for realizing both custom-built structures and target-oriented functionalities. For specific energy-related reactions, we emphasize the targeted property-structure relationships in these well-defined superstructured carbons. Finally, future developments and practicability challenges of superstructured carbons are also proposed
    • …
    corecore