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SUMMARY

The white organic light-emitting diode has become as a new class of
emerging solid-state lighting sources due to its advantage of warm,
pure white light emission, flexible lighting, and environmentally
friendly indoor lighting. Here, we report three rationally designed
cyclometalated [3 + 2+1] iridium(III) complexes that emit white
emission simultaneously from phosphorescent blue and yellow in
the solid-state thin film. The blue GaN-based solid-state white
light-emitting diodes with iridium(III) complexes as a color converter
show a color rendering index of 84.4 and International Commission
on Illumination (CIE) coordinates of (0.30, 0.33). In addition, the vac-
uum-deposited organic light-emitting diode device exhibits a low
turn-on voltage of 3.0 V and a maximum luminance (Lmax) of
335 cd m�2 with CIE coordinate of (0.31, 0.33), reaching standard
naturally warm white light.

INTRODUCTION

White organic light-emitting diodes (WOLEDs) have gradually become attractive

candidates for energy-saving and environmentally friendly solid-state lighting sour-

ces attributed to their high color rendering index (CRI), mechanical flexibility, high-

quality white emission, and low-cost fabrication.1–3 It has been recently reported

that the integration of green- to red-emitting phosphors into blue light-emitting

chips could demonstrate a comparable power efficiency to the state-of-the-art white

light-emitting diodes (WLEDs).4 In this case, WOLED devices could be fabricated by

vertically stacking multi-emissive layers (or multiple components) for the mixing of

primary colors (red, green, and blue [RGB]) or two complementary colors (blue

with yellow or orange).5,6 However, these WOLED devices require complicated

multi-layer thin film deposition processes and balanced electron and hole injection,

leading to a great challenge including the phase separation of emitters and voltage-

dependent emission color in the emissive layer.7–10

To realize white-light emission based on a single organic molecule,4,11 emitters with

a broad emission spectrum covering the whole visible region and dual emission are

commonly used. For fluorescent emitters, the blue emissions come from the p–p*

intraligand transition, and the yellow/orange emission comes from the intramolecu-

lar charge transfer,12 intermolecular interactions (dimer or excimer),13 partially

excited energy transfer,14 and excited-state proton transfer.15 However, these

require strict molecular orientation such as single-crystal characteristics and usually

generate fluorescence with relatively low internal quantum efficiency.4 Lately, taking
Cell Reports Physical Science 4, 101684, December 20, 2023 ª 2023 The Authors.
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advantage of the metal-metal interaction that facilitates the intermolecular interac-

tion of square-planar d8 platinum(II)16,17 and linear d10 gold(I), they have been re-

ported as single-component emitters and successfully fabricated as WOLEDs with

promising performance.18,19 Meanwhile, the report of the octahedral d6 iridium(III)

complexes as single-component white emitters has been rarely reported, even

though iridium(III) complexes show short phosphorescence lifetime, excellent ther-

mal and device stabilities and are commonly used as dopants for OLEDs.20,21 There-

fore, the development of single-component white-light emitters based on iridium(III)

complexes by manipulating their emissive states through ligand engineering is

anticipated.22–29

For instance, Zhang et al. reported a series of dual phosphorescence iridium(III) com-

plexes. Photophysical measurement and time-dependent density functional theory

(TD-DFT) calculation revealed that the dual emission was attributed to the rapid con-

version of IL (intraligand) charge transfer (CT) to ligand-ligand CT (LLCT) excited

states.24 Structural manipulation of the iridium(III) complexes exhibits naked-eye

distinguishable color changes in the aqueous buffer solution under the different at-

mospheres of N2, air, and O2, respectively.
24 Sarvendra Kumar et al. reported heter-

oleptic cyclometalated iridium(III) complexes with quinoline-type ligands whose

dual emission originates from two independent emissions states.23 However, these

dual-phosphorescent emissions iridium(III) complexes occur in the solution state but

not in the film state, which limits their application for WOLED.

With the experience in the development of [3 + 2+1] coordinated phosphorescent

iridium(III) complexes,2,30–32 we design three iridium(III) bromine complexes bearing

bidentate (N-phenyl, N-benzyl-pyridoimidazol-2-yl) (C^C) ligands for bright white-

light emission in solid-state state (powder or thin film) at room temperature. For

all iridium(III) complexes, the white light comes from dual-phosphorescent emission

at the high-energy blue and low-energy yellow regions. Upon introducing electron-

donating methyl, or electron-withdrawing fluorine group onto the 4-position of the

phenyl of C^C ligand, the phosphorescent quantum efficiency of these iridium(III)

complexes in the solid state increase from 3.1% to 14.1%, which is due to the

increased p‒‒p* interaction between the tridentate ligands of two adjacent mole-

cules of fluorinated iridium complexes (Ir-2). In addition, the molecular orientation

and stacking order affect the emission energies, which is supported by experimental

and the DFT and TD-DFT calculations. Finally, the performances of theWLEDs based

on Ir-2 and the OLED with Ir-2 as an active layer are measured and evaluated.
RESULTS AND DISCUSSION

Molecular synthesis and characterization

In this work, the ligands around iridium are redistributed to achieve a robust intermo-

lecular interaction, as shown in Figure 1C. Three coordination bonds are occupied

with forming a rigid planar, desired moiety for intermolecular interaction. Then a bi-

dentate ligand armed with a strong donor-accept (D-A) chromophore is grafted on

the remaining two iridium coordinations. In addition, a monodentate ligand with a

small steric hindrance is adopted to narrow intermolecular distance. This molecular

structure design strategy enables monomer luminescence and dimer luminescence

simultaneously.

Molecular structures of iridium(III) complexes are shown in Figure 1A, and the syn-

thetic route is shown in Scheme S1. In brief, the tridentate bis-N-heterocyclic-

carbene (NHC) pincer ligand pbib and bidentate ligands (pmpBz, pmpFBz, and
2 Cell Reports Physical Science 4, 101684, December 20, 2023



Figure 1. Molecular and crystal structures

(A) Molecular structures of Ir-1-3 studied here.

(B) Single-crystal structure of Ir‒‒2.
(C) Design strategy for iridium(III) complexes with dual emission.
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pmpMeBz) were synthesized according to the previously reported literature.33,34

Subsequently, the pbib and bidentate ligands reacted with the iridium(III) precursor

complex [Ir(COD)Cl]2 and obtained the solid-state single-component white-light

iridium(III) complexes Ir-1, Ir-2, and Ir-3, respectively. The iridium(III) complexes

were confirmed by 1H, 19F, and 13C nuclear magnetic resonance spectroscopies

(Figures S1‒S18) and high-resolution electrospray ionization mass spectroscopy

(Figures S19‒S21).

The single-crystal structure of Ir-2 confirms the validity of the design strategy

(Figures 1B and S23). The tridentate NHC pincer ligand pbib is a rigid planar struc-

ture, and the bond lengths of Ir‒C(1), Ir‒C(9), and Ir‒C(10) are 2.057, 2.013, and

2.068 Å, which are consistent with the corresponding data of [3 + 2+1] iridium(III)

complexes we reported before. The emission color of these [3 + 2+1] iridium(III)

complexes can be fine-tuned by modifying the structure of the bidentate ligand.35

In addition, the (D-A) fragment and pbib plane are almost perpendicular, reducing

the distortion of the molecular structure. The main single-crystal structure parame-

ters are listed in Tables S1–S3. Furthermore, as shown in Figures 1B and S24, the

monodentate halogen ligand (distance of Br . H is 2.930 Å) and other intermolec-

ular interactions narrow the distance between the two molecules. The distance

between the two pbib planes is 3.420 Å, which is sufficient for energy transfer or

interaction. The single-crystal of Ir-2 shows a white light with dual emissions, as

shown in Figure S25.

In order to investigate the photophysical properties of these complexes, a series of

photophysical measurements were performed. Firstly, we characterized the

absorption spectra of Ir-1-3 in degassed dilute dichloromethane (DCM) solutions
Cell Reports Physical Science 4, 101684, December 20, 2023 3



Figure 2. The emission prosperities of Ir-1-3

(A–C) The PL spectra in solution (c = 2 3 10�5 M in DCM) and powder state of (A) Ir-1, (B) Ir-2, and (C) Ir-3.

(D) The PLQY of Ir-1-3 complexes in powder state.

(E) Ir-2 temperature-dependent PL spectra taken from 260 to 500 K.

(F) The In[(I/I0�1] as a function of 1/T and the calculated activation energy (Ea) of Ir-2 in solid.
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(c = 2 3 10�5 M) to investigate the photophysical properties of the unimolecular. As

shown in Figure S26, Ir-1-3 shows a similar absorption spectrum (Ir-2 [312 nm] > Ir-1

[313 nm] > Ir-3 [314 nm]), which indicated that the introduction of the -F then -H and

-CH3 onto the bidentate ligand does not alter the absorption energies, and it is

possible such an effect has imposed a similar effect on the HOMO and LUMO and

thus cancels out. While the strong absorption around 310 nm (e z 104 M�1cm�1)

is assigned the spin-allowed singlet 1(p/p*) and metal to ligand charge transfer

(1MLCT) transitions. The weak absorption bands (e z 103 M�1cm�1) lying in the

visible light region at 350–400 nm are related to the spin-orbit coupling enhanced

triple 3(p/p*) transitions and metal to ligand charge transfer (3MLCT) transitions.36

The emission spectra and their photophysical properties of Ir-1-3 are shown in

Figures 2A–2C and Table 1. Ir-1-3 shows faint blue emission in degassed diluted so-

lution with a peak at 429 nm, 427 nm, and 433 nm, respectively. Similar to their ab-

sorption spectra, the emission energies are only slightly perturbed by the introduc-

tion of the -H, -CH3, and -F groups. Unlike the white emission of these complexes in

the solution state that is not detectable, the powder form of Ir-1-3 showed white

emission at ambient including dual peaks similar to the single crystal. The difference

between emission spectra in solution and solid is illustrated in Figure S27. The Ir-1-3

complexes were doped in a thin polymethylmethacrylate (PMMA) polymer film (at x

wt %, x = 20, 40, 60, 80) at ambient temperature, the emission spectra of complexes

in different molecular states were obtained. White-light emission in solid state is

desired to realize photoluminescence/electroluminescence applications. The sharp
4 Cell Reports Physical Science 4, 101684, December 20, 2023



Table 1. The emission properties of Ir-1-3 in dilute and solid powder

Complex

In dilute solutiona In powder

Absorption
lmax(nm)

Emission
lmax(nm) t (ms) PLQYb

Emission
lmax(nm) tc (ms) CIE PLQY (%)

Ir-1 313 429 0.65 – 432, 577 0.98, 1.05 (0.29, 0.28) 3.1

Ir-2 312 427 0.72 – 431, 578 1.12, 1.36 (0.30, 0.32) 14.1

Ir-3 314 433 0.89 – 433, 573 1.21, 1.38 (0.28, 0.27) 4.4
aData were measured in degassed DCM at 2 x 10�5 M.
b‘‘–‘‘ means the data are too weak to measure.
cThe lifetime of high-energy peak and low-energy peak, respectively.
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peaks in the X-ray diffraction pattern suggest the crystallization behavior in the pow-

der (Figure S28). The high energy peak position at the blue region is similar to the

emission’s character in dilute solutions. In addition, the Ir-1-3 in solid state shows

a relatively higher PLQY (photoluminescence quantum yield) than the dilute solu-

tion, benefiting the practical application. White emission with International Commis-

sion on Illumination (CIE) coordinates of (0.30, 0.32) is achieved from the powder of

Ir-2, which was quite close to the pure white color of CIE coordinate (0.33, 0.33). The

possible reason for higher PLQY and better CIE of Ir-2 is the existence of -F, which

forms two H. F (2.542 å) bonds (Figure S24) and enhances the intermolecular forces

and molecular rigid. It is obvious that the low-energy peak intensity of Ir-2 is higher

than the high-energy peak intensity, which is the opposite trend of Ir-1 and Ir-3. The

time-resolved photoluminescence spectrum in Figure S29 certified that both peaks

are phosphorescent. The excitation spectra of high-energy and low-energy peaks

verifies that these dual-phosphorescent emissions originate from two different

excited states (Figure S30).

Additionally, the emission spectra of complex Ir-2 in solid under constant tempera-

ture control from 260 to 500 K were also tested. As observed in Figure 2E, the inten-

sity of the luminescence spectra decreased with temperature increased due to

thermal quenching. It is worth noting that at low temperatures, the intensity of the

low-energy peak (ca. 570 nm) is much higher than that of the high-energy peak

(ca. 430 nm). At room temperature, their intensity is comparable, which is consistent

with the emission spectrum in the powder state. The activation energy (Ea) can be

obtained by the following equation:

IðTÞ =
I0

1+Aexp

�
� Ea

kBT

� (Equation 1)

where I(T) is the integrated photoluminescent intensity at temperature T and I0 is that

at initial temperature. A is a constant, and kB is Boltzmann’s constant. According to

the temperature-dependent PL spectra of Ir-2 in solid, we got the calculated activa-

tion energy (Ea) of 200 meV (Figure 2F), indicating high thermal stability and a very

promising candidate for white light illumination.

The electrochemical properties of the complex Ir-1-3were also investigated by cyclic

voltammetry in degassed DCM solutions (0.1 M nBu4NPF6). Figure S31 shows their

cyclic voltammograms, while electrochemical data are displayed in Table 2. Similar

to the previously reported literature, no significant reduction peaks were observed.

While complex Ir-1-3 shows a quasi-reversible couple or irreversible first oxidation

wave at ca. +0.95 V vs. saturated calomel electrode (SCE). This may be due to the

oxidation of the NHC bidentate carbene ligands (C^C).37 All the assignments are

in line with the TD-DFT calculations.
Cell Reports Physical Science 4, 101684, December 20, 2023 5



Table 2. Electrochemical data of the Ir-1-3 complexes

Complex

Oxidationa

E1/2 [V] vs. SCE
b (DEp [mV])c

[Epa [V] vs. SCE]
d EHOMO [eV]e ELUMO [eV]f

Ir-1 +0.95 (95) �5.29 �2.17

Ir-2 +0.96 �5.30 �2.11

Ir-3 +0.91 �5.21 �2.13
aIn DCM solution with 0.1 M.nBu4NPF6 as supporting electrolyte at 298 K working electrode, glassy car-

bon; scan rate = 100 mV�1.
bE1/2 = (Epa + Epc)/2; Epa and Epc are the peak anodic and peak cathodic potentials, respectively.
cDEp = (Epa � Epc).
dEpa refers to the anodic peak potential for the irreversible oxidation waves.
eEHOMO levels were calculated from electrochemical potentials, i.e., EHOMO = �e(Epa+(4.8�Fc

+/Fc)) or

EHOMO = �e(E1/2+(4.8�Fc
+/Fc)). (Fc

+/Fc = 0.46 V in CH2Cl2).
fLUMO = HOMO + Eg (where Eg = optical band gap, which is defined as the onset of absorption).
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In order to investigate the electronic structures and the nature of the absorption and

emission origins of the Ir(III) complexes, DFT and TD-DFT calculations have been

performed on Ir-1-3 at the B3LYP level of theory. The simulated UV-vis absorption

spectra of Ir-1-3 are shown in Figures S32–S34, in which the computed singlet-triplet

transitions with arbitrary oscillator strengths are shown in the inset. The first fifteen

singlet-singlet transitions computed by the TD-DFT/PCM (CH2Cl2) method are sum-

marized in Table S4, and the frontier molecular orbitals involved in the major transi-

tions are shown in Figures S35–S37. The first four singlet-triplet transitions of Ir-1-3

were computed at 350–400 nm, which is consistent with the weak absorption band

observed in the range of 350–400 nm in the experiment, and they can be assigned as
3MLCT transition mixing with 3p/p* transition. The intense absorption band

computed at ca. 310 nm mainly originates from the HOMO–2/LUMO transition,

where the HOMO–2 is the dp orbital on the metal center mixing with the p orbital

localized on the bidentate C^C ligand, and the LUMO is the p* orbital localized

on the pyridylimidazole moiety of the C^C ligand. Therefore, the absorption band

at ca. 310 nm can be assigned as 1MLCT[dp(Ir)/p*(C^C)] transition, mixing with
1IL transition of the C^C ligand with CT from the phenyl ring to the pyridylimidazole

moiety.
Orbital energy calculation

The energies of the frontier molecular orbitals of Ir-1-3 at their ground states are

shown in the orbital energy level diagram in Figure 3. Since the LUMOs of Ir-1-3

are localized on the pyridylimidazole moiety of the C^C ligand, which is less affected

by the substituent on the phenyl ring, their energies do not show much variation and

have values of ca. �1.20 eV. The HOMO energy of Ir-2 (�5.30 eV) is slightly more

negative than those of Ir-1 (�5.24 eV) and Ir-3 (�5.21 eV) because part of the

HOMO is on the phenyl ring of the C^C ligand, and so the electron-withdrawing flu-

oro group would stabilize the HOMO of Ir-2. Both the trends of the HOMO and

LUMO energies are in good agreement with that observed in the electrochemical

study.

The geometry of the lowest-lying triplet excited states (T1) of Ir-1-3 have been opti-

mized with the unrestricted UB3LYP/PCM (CH2Cl2) method to further investigate the

nature of the emissive state. The plots of spin density of the T1 states of Ir-1-3 are

shown in Figure S38. For all three complexes, the spin density is predominantly local-

ized on the C^C ligand and the metal center, supporting the 3MLCT and 3IL with CT

character of the T1 state. The emission wavelengths of Ir-1-3, approximated by the

energy difference between the S0 and the T1 states, are summarized in Table S5.
6 Cell Reports Physical Science 4, 101684, December 20, 2023



Figure 3. Calculated frontier orbital distributions

Orbital energy level diagram of the frontier molecular orbitals (H = HOMO and L = LUMO) of Ir1-3

at their optimized ground-state geometries.
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The emission wavelengths of the three complexes are ca. 400 nm and do not show

significant variation. This agrees with the results obtained in the photophysical study

that the emission wavelengths were measured to be ca. 430 nm.

WOLED measurements

The excellent solid-state luminescence properties of Ir-2 make it a promising candi-

date for phosphor-convertedWLEDs. A series ofWLEDs based on 365-nm LED chips

were fabricated. The iridium(III) complex was used as phosphors and blended

in silicone at a concentration of 5 wt %. The performance and detailed information

of those WLEDs are shown in Figure 4 and Table S12. Figure 4A exhibits spectra

and typical working state photographs of these WLEDs, and the correlated color

temperature and color rendering index (Ra) of obtained WLEDs could be effectively

tuned down from 6,428 to 9,832 K and 81.2 to 86.2, respectively, performing better

than commercial phosphors. It can be seen in Figures 4B and 4C that the PL spec-

trum and chromaticity coordinates of these WLEDs in the CIE chromaticity diagram

change with the load currents. When the driving current is increased, the luminous

efficiency of LED chip will be stronger, which allows more complexes to be excited.

The low-energy band of spectra of WLEDs gradually increases, resulting in the CIE

coordinates moving to the upper right. The results indicate that Ir-2 can realize a se-

ries of WLEDs with different color temperatures, promising phosphor for WLEDs for

white light illumination.

To obtain the electroluminescent properties of the Ir(III) complexes, OLEDs with a de-

vice structure of (ITO/(HAT-CN) (10 nm)/TAPC (40 nm)/TCTA (10 nm)/x wt %dopant in

DPEPO (10 nm)/TmPyPB (40 nm)/Liq (2.5 nm)/Al (100 nm)) have been fabricated.

HAT-CN served as a hole-injection layer, TAPC (1,1-bis{4-[N,N-di(p-tolyl)amino]

phenyl}cyclohexane) served as a hole-transporting layer, TCTA (4,4,4-Tris(carbazol-

9-yl)-triphenylamine) served as an electron-blocking layer to prevent the formation

of an exciplex between TAPC and the EMLs, TmPyPB (3,3’-[5’-[3-(3-pyridinyl)

phenyl][1,1’:30,100-terphenyl]-3,’’-diyl]bispyridine) served as an electron-transporting

layer, and Liq (8-hydroxyquinoline lithium) served as an electron-injection layer,

with ITO (indium-tin oxide) anode and Al cathode. The excitation and emission

spectra of the thin films with Ir-2 doped in host DPEPO at different concentrations

are shown in Figure S39. It can be seen from the excitation spectrum that with the in-

crease of doping concentration, the peak intensity of 319 nm increases, which can be
Cell Reports Physical Science 4, 101684, December 20, 2023 7



Figure 4. Performance of WLEDs

(A) The photoluminescence spectra of the blue GaN-based WLEDs using Ir-2 as phosphors blended in silicone at different currents; inset: image of the

WLEDs in working state.

(B) The photoluminescence spectra of the WLEDs at different driving currents.

(C) CIE chromaticity coordinates of the WLEDs with the phosphor blended at different currents.
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assigned to the PL band in the low-energy region. In order to obtain obvious white

light emission in the device, Ir-2 was doped in DPEPO at different concentrations

of x wt % (x = 20, 30, 40, 50, 60) in the emitting layer. The device structure with its en-

ergy level diagram is shown in Figure 5A. The electroluminescent properties results

are summarized in Table 3.

The OLED with Ir-2 as an active layer showed a lower turn-on voltage of 3.0 V, a

maximum EQE of 6.2%, and a maximum luminance (Lmax) of 335 cd m�2 at 30

wt %. Simultaneously, the white light with a CIE coordinate of (0.31, 0.33) was

achieved successfully, which was very close to the standard white light, as shown

in the inset of Figure 5B. Furthermore, complexes Ir-1 and Ir-3 have also been fabri-

cated with the device structure at 30 wt %. Figure 5 shows the electroluminescence

properties based on different guests Ir-1-3. The EL spectra of these devices were

redshifted by ca. 60 nm compared to the PL spectra in solid. Meanwhile, the intensity

of the low-energy peak of Ir-2 is larger than that of Ir-1 and Ir-3, which is consistent

with the previous experimental data. Among them, the device based on Ir-2 ex-

hibited better performance due to its higher PLQY than the others.

Here, we design and synthesize three organometallic iridium(III) complexes, which

show bright solid-state white-light emission at room temperature. The white light
8 Cell Reports Physical Science 4, 101684, December 20, 2023



Figure 5. Electroluminescence performances of Ir-1-3 in doped OLEDs

(A) Device structure and energy level of the electroluminescent device.

(B) EL spectra. Inset: the photograph of the electroluminescent device in working state.

(C) Current density-voltage-luminance (J-V-L) characteristics.

(D) EQE vs. luminance.
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comes fromdual-phosphorescent emission at the high-energy blue region and the low-

energy yellow region. The emission shows a mixed character of 3MLCT, 3LLCT, and
3ILCT. The molecular orientation and stacking affect the emission color and PLQY,

especially the low-energy peak. The DFT and TD-DFT calculations suggest the p-p

interaction between tridentate ligands of two adjacent molecules excites the metal

to ligand charge transfer (3MLLCT), which enhances phosphorescence emission in

the solid state to a quantum photoluminescence yield of 14%. Ir-2 exhibits notable sin-

gle-component photoluminescence and electroluminescence properties. The WLEDs
Table 3. Device performance data of Ir-1-3 doped in DPEPO

Dopant Conc. [x wt %] Von
a [V] Lmax

b [cd m�2] lmax
c [nm] CIE [x,y]d hExt

e [%] hL
f [cd A�1] hP

g [lm W�1]

Ir-2 20 3.1 346 485, (572) (0.29, 0.30) 5.8 11.7 11.8

– 30 3.0 335 485, (572) (0.31, 0.33) 6.2 12.7 13.3

– 40 3.0 281 485, (572) (0.28, 0.30) 5.4 10.8 11.3

– 50 3.0 262 495, (573) (0.32, 0.34) 4.3 9.3 9.7

– 60 3.0 219 492, (573) (0.29, 0.31) 3.8 7.7 8.0

Ir-1 30 3.0 427 497, (571) (0.26, 0.30) 5.9 12.2 12.7

Ir-3 30 3.1 314 498, (571) (0.26, 0.31) 4.3 10.1 10.1
aAt 1 cd/m2.
bMaximum luminance (Lmax).
cPeak maximum (lmax).
dCIE coordinates at 100 cd m�2.
eMaximum external quantum efficiency (hExt).
fMaximum current efficiency (hL).
gMaximum power efficiency (hP).

Cell Reports Physical Science 4, 101684, December 20, 2023 9
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based on Ir-2 show a best CRI of 86.2, higher than the commercial LED of 78. TheOLED

with Ir-2 as an active layer exhibits a low turn-on voltage of 3.0 V, a maximum EQE of

6.2%, and a maximum luminance (Lmax) of 335 cd m�2 with CIE coordinate of (0.31,

0.33). Our results provide a strategy to achieve single-component white OLEDs based

on iridium(III) complexes.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Guodan Wei (weiguodan@sz.tsinghua.edu.cn).

Materials availability

The target molecules can be produced following the procedures in the section of

materials synthesis in the supplemental experimental procedures. Any additional in-

formation or requests for materials will be handled by the lead contact upon reason-

able request.

Data and code availability

The accession number for the single-crystal structure of Ir-2 reported in this paper is

CCDC: 2241509. The datasets generated during this study are presented within the

article and supplemental information or can be provided by the authors upon

reasonable request.
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