15 research outputs found

    Diff-Transfer: Model-based Robotic Manipulation Skill Transfer via Differentiable Physics Simulation

    Full text link
    The capability to transfer mastered skills to accomplish a range of similar yet novel tasks is crucial for intelligent robots. In this work, we introduce Diff-Transfer\textit{Diff-Transfer}, a novel framework leveraging differentiable physics simulation to efficiently transfer robotic skills. Specifically, Diff-Transfer\textit{Diff-Transfer} discovers a feasible path within the task space that brings the source task to the target task. At each pair of adjacent points along this task path, which is two sub-tasks, Diff-Transfer\textit{Diff-Transfer} adapts known actions from one sub-task to tackle the other sub-task successfully. The adaptation is guided by the gradient information from differentiable physics simulations. We propose a novel path-planning method to generate sub-tasks, leveraging QQ-learning with a task-level state and reward. We implement our framework in simulation experiments and execute four challenging transfer tasks on robotic manipulation, demonstrating the efficacy of Diff-Transfer\textit{Diff-Transfer} through comprehensive experiments. Supplementary and Videos are on the website https://sites.google.com/view/difftransfe

    Experimental quantum adversarial learning with programmable superconducting qubits

    Full text link
    Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 μ\mus, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.Comment: 26 pages, 17 figures, 8 algorithm

    Mechanism of sphingolipid homeostasis revealed by structural analysis of \u3ci\u3eArabidopsis\u3c/i\u3e SPT-ORM1 complex

    Get PDF
    The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood.We determined the cryo–electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance

    Observation of many-body Fock space dynamics in two dimensions

    Full text link
    Quantum many-body simulation provides a straightforward way to understand fundamental physics and connect with quantum information applications. However, suffering from exponentially growing Hilbert space size, characterization in terms of few-body probes in real space is often insufficient to tackle challenging problems such as quantum critical behavior and many-body localization (MBL) in higher dimensions. Here, we experimentally employ a new paradigm on a superconducting quantum processor, exploring such elusive questions from a Fock space view: mapping the many-body system onto an unconventional Anderson model on a complex Fock space network of many-body states. By observing the wave packet propagating in Fock space and the emergence of a statistical ergodic ensemble, we reveal a fresh picture for characterizing representative many-body dynamics: thermalization, localization, and scarring. In addition, we observe a quantum critical regime of anomalously enhanced wave packet width and deduce a critical point from the maximum wave packet fluctuations, which lend support for the two-dimensional MBL transition in finite-sized systems. Our work unveils a new perspective of exploring many-body physics in Fock space, demonstrating its practical applications on contentious MBL aspects such as criticality and dimensionality. Moreover, the entire protocol is universal and scalable, paving the way to finally solve a broader range of controversial many-body problems on future larger quantum devices.Comment: 8 pages, 4 figures + supplementary informatio

    Pharmacokinetics of oxiracetam and its degraded substance (HOPAA) after oral and intravenous administration in rats

    No full text
    The pharmacokinetics of oxiracetam and its degraded substance (4-hydroxy-2-oxo-1-pyrrolidine acetic acid, HOPAA) after oral and intravenous administration in rats were studied using an established UPLC-MS/MS method. Three groups of rats after an overnight fasted received 10 g/kg (n = 6) oxiracetam suspensions orally, and 2 g/kg (n = 6) normal or degraded oxiracetam injections intravenously via a caudal tail vein, respectively. Before the pharmacokinetic experiment, a simple safety evaluation test was conducted on the degraded oxiracetam injections containing 16.16% HOPAA in mice. There was no mortality by a single intravenous dose of 2 g/kg of degraded oxiracetam injections within two weeks, demonstrating that HOPAA was non-toxic in mice. Following intravenous administration of the normal injections, the plasma concentration-time curves of oxiracetam and HOPAA both showed a rapid elimination phase. The values of t1/2 were 3.1 ± 1.5 h for oxiracetam and 0.8 ± 0.2 h for HOPAA, and the mean residence times (MRT) were 1.2 ± 0.1 h and 0.8 ± 0.1 h, respectively. Oxiracetam and HOPAA after intravenous administration of the degraded oxiracetam injections presented elimination patterns similar to those observed in the normal injections. Oral pharmacokinetic results showed that the Tmax was less than 1.5 h for the two analytes, and both had a longer t1/2 and MRT than those of intravenous administration. Contents of HOPAA in three groups were calculated based on AUC0–t values of the two analytes. The quantitative change of HOPAA in vivo was also evaluated by comparing the plasma concentrations of HOPAA and oxiracetam at the same time for every group. Additionally, the values of absolute bioavailability of oxiracetam were about 8.0% and 7.4% calculated by the normal or degraded oxiracetam injections, which were far less than the value of 75% reported in literature, indicating the necessity of further study

    A Multi-Dimensional Calibration Based on Genetic Algorithm in a 12-Bit 750 MS/s Pipelined ADC

    No full text
    As the preferred architecture for high-speed and high-resolution analog-to-digital converters (ADC), the accuracy of pipelined ADC is limited mainly by various errors arising from multiple digital-to-analog converters (MDAC). This paper presents a multi-dimensional (M-D) MDAC calibration based on a genetic algorithm (GA) in a 12-bit 750 MS/s pipelined ADC. The proposed M-D MDAC compensation model enables capacitor mismatch and static interstage gain error (IGE) compensation on the chip and prepares for subsequent background calibration based on a pseudo-random number (PN) injection to achieve accurate compensation for dynamic IGE. An M-D coefficient extraction scheme based on GA is also proposed to extract the required compensation coefficients of the foreground calibration, which avoids falling into local traps through MATLAB. The above calibration scheme has been verified in a prototype 12-bit 750 MS/s pipelined ADC. The measurement results show that the signal-to-noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are increased from 49.9 dB/66.7 dB to 59.6 dB/77.5 dB with the proposed calibration at 25 °C. With the help of background calibration at 85 °C, the SNDR and SFDR are improved by 3.4 dB and 8.8 dB, respectively

    Collaborative regulation of yeast SPT-Orm2 complex by phosphorylation and ceramide

    No full text
    Summary: The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular β-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular β-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide
    corecore