4 research outputs found

    Ultrafast strain-induced charge transport in semiconductor superlattices

    No full text
    We investigate the effect of hypersonic (> 1 GHz) acoustic phonon wavepackets on electron transport in a semiconductor superlattice. Our quantum mechanical simulations demonstrate that a GHz train of picosecond deformation strain pulses propagating through a superlattice can generate current oscillations whose frequency is many times higher than that of the strain pulse train, potentially reaching the THz regime. The shape and polarity of the calculated current pulses agree well with experimentally measured electric signals. The calculations also explain and accurately reproduce the measured variation of the induced current pulse magnitude with the strain pulse amplitude and applied bias voltage. Our results open a route to developing acoustically-driven semiconductor superlattices as sources of millimetre and sub-millimetre electromagnetic waves

    Universal mobility characteristics of graphene originating from charge scattering by ionised impurities

    No full text
    Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures

    Inter-flake quantum transport of electrons and holes in inkjet-printed graphene devices

    No full text
    2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures made by sequential deposition of exfoliated 2D layers. There is a need for scalable manufacturing techniques capable of producing high‐quality large‐area devices comprising multiple 2D materials. Additive manufacturing with inks containing 2D material flakes is a promising solution. Inkjet‐printed devices incorporating 2D materials have been demonstrated, however there is a need for greater understanding of quantum transport phenomena as well as their structural properties. Experimental and theoretical studies of inkjet‐printed graphene structures are presented. Detailed electrical and structural characterization is reported and explained by comparison with transport modeling that include inter‐flake quantum tunneling transport and percolation dynamics. The results reveal that the electrical properties are strongly influenced by the flakes packing fraction and by complex meandering electron trajectories, which traverse several printed layers. Controlling these trajectories is essential for printing high‐quality devices that exploit the properties of 2D materials. Inkjet‐printed graphene is used to make a field effect transistor and Ohmic contacts on an InSe phototransistor. This is the first time that inkjet‐printed graphene has successfully replaced single layer graphene as a contact material for 2D metal chalcogenides
    corecore