29 research outputs found

    Stabilizing role of platelet P2Y(12) receptors in shear-dependent thrombus formation on ruptured plaques

    Get PDF
    Background: In most models of experimental thrombosis, healthy blood vessels are damaged. This results in the formation of a platelet thrombus that is stabilized by ADP signaling via P2Y(12) receptors. However, such models do not predict involvement of P2Y(12) in the clinically relevant situation of thrombosis upon rupture of atherosclerotic plaques. We investigated the role of P2Y(12) in thrombus formation on (collagen-containing) atherosclerotic plaques in vitro and in vivo, by using a novel mouse model of atherothrombosis. Methodology: Plaques in the carotid arteries from Apoe(-/-) mice were acutely ruptured by ultrasound treatment, and the thrombotic process was monitored via intravital fluorescence microscopy. Thrombus formation in vitro was assessed in mouse and human blood perfused over collagen or plaque material under variable conditions of shear rate and coagulation. Effects of two reversible P2Y(12) blockers, ticagrelor (AZD6140) and cangrelor (AR-C69931MX), were investigated. Principal Findings: Acute plaque rupture by ultrasound treatment provoked rapid formation of non-occlusive thrombi, which were smaller in size and unstable in the presence of P2Y(12) blockers. In vitro, when mouse or human blood was perfused over collagen or atherosclerotic plaque material, blockage or deficiency of P2Y(12) reduced the thrombi and increased embolization events. These P2Y(12) effects were present at shear rates >500 s(-1), and they persisted in the presence of coagulation. P2Y(12)-dependent thrombus stabilization was accompanied by increased fibrin(ogen) binding. Conclusions/Significance: Platelet P2Y(12) receptors play a crucial role in the stabilization of thrombi formed on atherosclerotic plaques. This P2Y(12) function is restricted to high shear flow conditions, and is preserved in the presence of coagulation

    Platelet-Associated Matrix Metalloproteinases Regulate Thrombus Formation and Exert Local Collagenolytic Activity

    Get PDF
    Objective Platelets are increasingly implicated in processes beyond hemostasis and thrombosis, such as vascular remodeling. Members of the matrix metalloproteinase (MMP) family not only remodel the extracellular matrix but also modulate platelet function. Here, we made a systematic comparison of the roles of MMP family members in acute thrombus formation under flow conditions and assessed platelet-dependent collagenolytic activity over time. Approach and Results Pharmacological inhibition of MMP-1 or MMP-2 (human) or deficiency in MMP-2 (mouse) suppressed collagen-dependent platelet activation and thrombus formation under flow, whereas MMP-9 inhibition/deficiency stimulated these processes. The absence of MMP-3 was without effect. Interestingly, MMP-14 inhibition led to the formation of larger thrombi, which occurred independently of its capacity to activate MMP-2. Platelet thrombi exerted local collagenolytic activity capable of cleaving immobilized dye-quenched collagen and fibrillar collagen fibers within hours, with loss of the majority of the platelet adhesive properties of collagen as a consequence. This collagenolytic activity was redundantly mediated by platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 but occurred independently of platelet -granule release (Nbeal2(-/-) mice). The latter was in line with subcellular localization experiments, which indicated a granular distribution of MMP-1 and MMP-2 in platelets, distinct from -granules. Whereas MMP-9 protein could not be detected inside platelets, activated platelets did bind plasma-derived MMP-9 to their plasma membrane. Overall, platelet MMP activity was predominantly membrane-associated and influenced by platelet activation status. Conclusions Platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 differentially modulate acute thrombus formation and at later time points limit thrombus formation by exerting collagenolytic activity

    Acid Sphingomyelinase Regulates Platelet Cell Membrane Scrambling, Secretion, and Thrombus Formation

    Get PDF
    Objective-Platelet activation is essential for primary hemostasis and acute thrombotic vascular occlusions. On activation, platelets release their prothrombotic granules and expose phosphatidylserine, thus fostering thrombin generation and thrombus formation. In other cell types, both degranulation and phosphatidylserine exposure are modified by sphingomyelinase-dependent formation of ceramide. The present study thus explored whether acid sphingomyelinase participates in the regulation of platelet secretion, phosphatidylserine exposure, and thrombus formation. Approach and Results-Collagen-related peptide-induced or thrombin-induced ATP release and P-selectin exposure were significantly blunted in platelets from Asm-deficient mice (Smpd1(-/-)) when compared with platelets from wild-type mice (Smpd1(+/+)). Moreover, phosphatidylserine exposure and thrombin generation were significantly less pronounced in Smpd1(-/-) platelets than in Smpd1(+/+) platelets. In contrast, platelet integrin alpha(IIb)beta(3) activation and aggregation, as well as activation-dependent Ca2+ flux, were not significantly different between Smpd1(-/-) and Smpd1(+/+) platelets. In vitro thrombus formation at shear rates of 1700 s(-1) and in vivo thrombus formation after FeCl3 injury were significantly blunted in Smpd1(-/-) mice while bleeding time was unaffected. Asm-deficient platelets showed significantly reduced activation-dependent ceramide formation, whereas exogenous ceramide rescued diminished platelet secretion and thrombus formation caused by Asm deficiency. Treatment of Smpd1(+/+) platelets with bacterial sphingomyelinase (0.01 U/mL) increased, whereas treatment with functional acid sphingomyelinase-inhibitors, amitriptyline or fluoxetine (5 mu mol/L), blunted activation-dependent platelet degranulation, phosphatidylserine exposure, and thrombus formation. Impaired degranulation and thrombus formation of Smpd1(-/-) platelets were again overcome by exogenous bacterial sphingomyelinase. Conclusions-Acid sphingomyelinase is a completely novel element in the regulation of platelet plasma membrane properties, secretion, and thrombus formation

    Fibrillar type I collagens enhance platelet-dependent thrombin generation via glycoprotein VI with direct support of alpha2beta1 but not alphaIIbbeta3 integrin.

    Full text link
    The role of collagens and collagen receptors was investigated in stimulating platelet-dependent thrombin generation. Fibrillar type-I collagens, including collagen from human heart, were most potent in enhancing thrombin generation, in a way dependent on exposure of phosphatidylserine (PS) at the platelet surface. Soluble, non-fibrillar type-I collagen required pre-activation of integrin alpha2beta1 with Mn2+ for enhancement of thrombin generation. With all preparations, blocking of glycoprotein VI (GPVI) with 9O12 antibody abrogated the collagen-enhanced thrombin generation, regardless of the alpha2beta 1 activation state. Blockade of alpha2beta1 alone or antagonism of autocrine thromboxane A2 and ADP were less effective. Blockade of alphaIIbbeta3 with abciximab suppressed thrombin generation in platelet-rich plasma, but this did not abolish the enhancing effect of collagens. The high activity of type-I fibrillar collagens in stimulating GPVI-dependent procoagulant activity was confirmed in whole-blood flow studies, showing that these collagens induced relatively high expression of PS. Together, these results indicate that: i) fibrillar type-I collagen greatly enhances thrombin generation, ii) GPVI-induced platelet activation is principally responsible for the procoagulant activity of fibrillar and non-fibrillar collagens, iii) alpha2beta1 and signaling via autocrine mediators facilitate and amplify this GPVI activity, and iv) alphaIIbbeta3 is not directly involved in the collagen effect

    Aging- and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release

    No full text
    Background: Platelet microparticles (PM) are the most abundant cell-derived microparticles in the blood, and accumulate in thrombo-inflammatory diseases. Platelets produce PM upon aging via an apoptosis-like process and by activation with strong agonists. We previously showed that long-term treatment of monocytic cells with apoptosis-induced PM (PM(ap)) promotes their differentiation into resident macrophages. Here we investigated shorter term effects of various types of PM on monocyte signalling and function. Methods and results: Flow cytometry and scanning electron microscopy revealed that PM formed upon platelet aging (PM(ap)) or ultra-sonication (PM(sonic)) expressed activated α(IIb)β(3) integrins and tended to assemble into aggregates. In contrast, PM formed upon platelet activation with thrombin (PM(thr)) or Ca(2+) ionophore (PM(iono)) had mostly non-activated α(IIb)β(3) and little aggregate formation, but had increased CD63 expression. PM from activated and sonicated platelets expressed phosphatidylserine at their surface, while only the latter were enriched in the receptors CD40L and CX3CR1. All PM types expressed P-selectin, interacted with monocytic cells via this receptor, and were internalised into these cells. The various PM types promoted actin cytoskeletal rearrangements and hydrogen peroxide production by monocytic cells. Markedly, both aging- and activation-induced PM types stimulated the phosphoinositide 3-kinase/Akt pathway, suppressing apoptosis induced by several agonists, in a P-selectin-dependent manner. On the other hand, the PM types differentially influenced monocyte signalling in eliciting Ca(2+) fluxes (particularly PM(ap)) and in releasing secondary mediators (complement factor C5a with PM(ap), and pro-inflammatory tumour necrosis factor-α with PM(thr)). Conclusions: In spite of their common anti-apoptotic potential via Akt activation, aging- and activation-induced PM cause different Ca(2+) signalling events and mediator release in monocytic cells. By implication, aging and activated platelets may modulate monocyte function in different way by the shedding of different PM types

    Key role of integrin alpha(IIb)beta(3) signaling to Syk kinase in tissue factor-induced thrombin generation

    Get PDF
    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann’s thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-012-1033-2) contains supplementary material, which is available to authorized users
    corecore