3 research outputs found

    Evaluating the capacity of human gut microorganisms to colonize the zebrafish larvae (Danio rerio)

    Get PDF
    Indexación: Scopus.In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host. © 2018 Valenzuela, Caruffo, Herrera, Medina, Coronado, Feijóo, Muñoz, Garrido, Troncoso, Figueroa, Toro, Reyes-Jara, Magne and Navarrete.https://www.frontiersin.org/articles/10.3389/fmicb.2018.01032/ful

    Articaine in functional NLC show improved anesthesia and anti-inflammatory activity in zebrafish

    Get PDF
    Indexación ScopusAnesthetic failure is common in dental inflammation processes, even when modern agents, such as articaine, are used. Nanostructured lipid carriers (NLC) are systems with the potential to improve anesthetic efficacy, in which active excipients can provide desirable properties, such as anti-inflammatory. Coupling factorial design (FD) for in vitro formulation development with in vivo zebrafish tests, six different NLC formulations, composed of synthetic (cetyl palmitate/triglycerides) or natural (avocado butter/olive oil/copaiba oil) lipids were evaluated for loading articaine. The formulations selected by FD were physicochemically characterized, tested for shelf stability and in vitro release kinetics and had their in vivo effect (anti-inflammatory and anesthetic effect) screened in zebrafish. The optimized NLC formulation composed of avocado butter, copaiba oil, Tween 80 and 2% articaine showed adequate physicochemical properties (size = 217.7 ± 0.8 nm, PDI = 0.174 ± 0.004, zeta potential = − 40.2 ± 1.1 mV, %EE = 70.6 ± 1.8) and exhibited anti-inflammatory activity. The anesthetic effect on touch reaction and heart rate of zebrafish was improved to 100 and 60%, respectively, in comparison to free articaine. The combined FD/zebrafish approach was very effective to reveal the best articaine-in-NLC formulation, aiming the control of pain at inflamed tissues. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-020-76751-

    Different wild type strains of zebrafish show divergent susceptibility to TNBS-induced intestinal inflammation displaying distinct immune cell profiles

    No full text
    Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore