166 research outputs found
Physics of the Pseudogap State: Spin-Charge Locking
The properties of the pseudogap phase above Tc of the high-Tc cuprate
superconductors are described by showing that the Anderson-Nambu SU(2) spinors
of an RVB spin gap 'lock' to those of the electron charge system because of the
resulting improvement of kinetic energy. This enormously extends the range of
the vortex liquid state in these materials. As a result it is not clear that
the spinons are ever truly deconfined. A heuristic description of the
electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter
Random walk in a two-dimensional self-affine random potential : properties of the anomalous diffusion phase at small external force
We consider the random walk of a particle in a two-dimensional self-affine
random potential of Hurst exponent in the presence of an external force
. We present numerical results on the statistics of first-passage times that
satisfy closed backward master equations. We find that there exists a
zero-velocity phase in a finite region of the external force , where
the dynamics follows the anomalous diffusion law $ x(t) \sim \xi(F) \
t^{\mu(F)} 0<\mu(F)<1\xi(F)FF \to 0\mu(F) \propto F^aa \simeq 0.6a=1d=1\xi(F) \propto F^{-\nu}\nu
\simeq 1.29\nu=2d=1\xi(F)1/\mu(F)d=1$,
means that the particle uses the transverse direction to find lower barriers.Comment: 10 pages, 8 figures, v2=final versio
Driven interfaces in random media at finite temperature : is there an anomalous zero-velocity phase at small external force ?
The motion of driven interfaces in random media at finite temperature and
small external force is usually described by a linear displacement at large times, where the velocity vanishes according to the
creep formula as for . In this paper,
we question this picture on the specific example of the directed polymer in a
two dimensional random medium. We have recently shown (C. Monthus and T. Garel,
arxiv:0802.2502) that its dynamics for F=0 can be analyzed in terms of a strong
disorder renormalization procedure, where the distribution of renormalized
barriers flows towards some "infinite disorder fixed point". In the present
paper, we obtain that for small , this "infinite disorder fixed point"
becomes a "strong disorder fixed point" with an exponential distribution of
renormalized barriers. The corresponding distribution of trapping times then
only decays as a power-law , where the exponent
vanishes as as . Our
conclusion is that in the small force region , the divergence of
the averaged trapping time induces strong
non-self-averaging effects that invalidate the usual creep formula obtained by
replacing all trapping times by the typical value. We find instead that the
motion is only sub-linearly in time , i.e. the
asymptotic velocity vanishes V=0. This analysis is confirmed by numerical
simulations of a directed polymer with a metric constraint driven in a traps
landscape. We moreover obtain that the roughness exponent, which is governed by
the equilibrium value up to some large scale, becomes equal to
at the largest scales.Comment: v3=final versio
Intermittency of Height Fluctuations and Velocity Increment of The Kardar-Parisi-Zhang and Burgers Equations with infinitesimal surface tension and Viscosity in 1+1 Dimensions
The Kardar-Parisi-Zhang (KPZ) equation with infinitesimal surface tension,
dynamically develops sharply connected valley structures within which the
height derivative is not continuous. We discuss the intermittency issue in the
problem of stationary state forced KPZ equation in 1+1--dimensions. It is
proved that the moments of height increments behave as with for length scales . The length scale is the characteristic length of the
forcing term. We have checked the analytical results by direct numerical
simulation.Comment: 13 pages, 9 figure
Replica symmetry breaking in long-range glass models without quenched disorder
We discuss mean field theory of glasses without quenched disorder focusing on
the justification of the replica approach to thermodynamics. We emphasize the
assumptions implicit in this method and discuss how they can be verified. The
formalism is applied to the long range Ising model with orthogonal coupling
matrix. We find the one step replica-symmetry breaking solution and show that
it is stable in the intermediate temperature range that includes the glass
state but excludes very low temperatures. At very low temperatures this
solution becomes unstable and this approach fails.Comment: 6 pages, 2 figure
Universal temperature dependence of the conductivity of a strongly disordered granular metal
A disordered array of metal grains with large and random intergrain
conductances is studied within the one-loop accuracy renormalization group
approach. While at low level of disorder the dependence of conductivity on log
T is nonuniversal (it depends on details of the array's geometry), for strong
disorder this dependence is described by a universal nonlinear function, which
depends only on the array's dimensionality. In two dimensions this function is
found numerically. The dimensional crossover in granular films is discussed.Comment: 6 pages, 6 figures, submitted to JETP Letter
Degenerate Bose liquid in a fluctuating gauge field
We study the effect of a strongly fluctuating gauge field on a degenerate
Bose liquid, relevant to the charge degrees of freedom in doped Mott
insulators. We find that the superfluidity is destroyed. The resulting metallic
phase is studied using quantum Monte Carlo methods. Gauge fluctuations cause
the boson world lines to retrace themselves. We examine how this world-line
geometry affects the physical properties of the system. In particular, we find
a transport relaxation rate of the order of 2kT, consistent with the normal
state of the cuprate superconductors. We also find that the density excitations
of this model resemble that of the full tJ model.Comment: 4 pages. Uses RevTeX, epsf, multicols macros. 5 postscript figure
Two-loop approximation in the Coulomb blockade problem
We study Coulomb blockade (CB) oscillations in the thermodynamics of a
metallic grain which is connected to a lead by a tunneling contact with a large
conductance in a wide temperature range, ,
where is the charging energy. Using the instanton analysis and the
renormalization group we obtain the temperature dependence of the amplitude of
CB oscillations which differs from the previously obtained results. Assuming
that at the oscillation amplitude weakly depends on
temperature we estimate the magnitude of CB oscillations in the ground state
energy as .Comment: 10 pages, 3 figure
Low-frequency dynamics of disordered XY spin chains and pinned density waves: from localized spin waves to soliton tunneling
A long-standing problem of the low-energy dynamics of a disordered XY spin
chain is re-examined. The case of a rigid chain is studied where the quantum
effects can be treated quasiclassically. It is shown that as the frequency
decreases, the relevant excitations change from localized spin waves to
two-level systems to soliton-antisoliton pairs. The linear-response correlation
functions are calculated. The results apply to other periodic glassy systems
such as pinned density waves, planar vortex lattices, stripes, and disordered
Luttinger liquids.Comment: (v2) Major improvements in presentation style. One figure added (v3)
Another minor chang
Vortex-line liquid phases: Longitudinal superconductivity in the lattice London model
We study the vortex-line lattice and liquid phases of a clean type-II
superconductor by means of Monte Carlo simulations of the lattice London model.
Motivated by a recent controversy regarding the presence, within this model, of
a vortex-liquid regime with longitudinal superconducting coherence over long
length scales, we directly compare two different ways to calculate the
longitudinal coherence. For an isotropic superconductor, we interpret our
results in terms of a temperature regime within the liquid phase in which
longitudinal superconducting coherence extends over length scales larger than
the system thickness studied. We note that this regime disappears in the
moderately anisotropic case due to a proliferation, close to the flux-line
lattice melting temperature, of vortex loops between the layers.Comment: 8 pages, Revtex, with eps figures. To appear in Phys. Rev.
- …