226 research outputs found

    Microwave response of an NS ring coupled to a superconducting resonator

    Get PDF
    A long phase coherent normal (N) wire between superconductors (S) is characterized by a dense phase dependent Andreev spectrum . We probe this spectrum in a high frequency phase biased configuration, by coupling an NS ring to a multimode superconducting resonator. We detect a dc flux and frequency dependent response whose dissipative and non dissipative components are related by a simple Debye relaxation law with a characteristic time of the order of the diffusion time through the N part of the ring. The flux dependence exhibits h/2eh/2e periodic oscillations with a large harmonics content at temperatures where the Josephson current is purely sinusoidal. This is explained considering that the populations of the Andreev levels are frozen on the time-scale of the experiments.Comment: 5 pages,4 figure

    Intermittency of Height Fluctuations and Velocity Increment of The Kardar-Parisi-Zhang and Burgers Equations with infinitesimal surface tension and Viscosity in 1+1 Dimensions

    Full text link
    The Kardar-Parisi-Zhang (KPZ) equation with infinitesimal surface tension, dynamically develops sharply connected valley structures within which the height derivative is not continuous. We discuss the intermittency issue in the problem of stationary state forced KPZ equation in 1+1--dimensions. It is proved that the moments of height increments Ca=C_a = behave as ∣x1−x2∣ξa |x_1 -x_2|^{\xi_a} with ξa=a\xi_a = a for length scales ∣x1−x2∣<<σ|x_1-x_2| << \sigma. The length scale σ\sigma is the characteristic length of the forcing term. We have checked the analytical results by direct numerical simulation.Comment: 13 pages, 9 figure

    Random walk in a two-dimensional self-affine random potential : properties of the anomalous diffusion phase at small external force

    Full text link
    We consider the random walk of a particle in a two-dimensional self-affine random potential of Hurst exponent H=1/2H=1/2 in the presence of an external force FF. We present numerical results on the statistics of first-passage times that satisfy closed backward master equations. We find that there exists a zero-velocity phase in a finite region of the external force 0<F<Fc0<F<F_c, where the dynamics follows the anomalous diffusion law $ x(t) \sim \xi(F) \ t^{\mu(F)} .Theanomalousexponent. The anomalous exponent 0<\mu(F)<1andthecorrelationlength and the correlation length \xi(F)varycontinuouslywith vary continuously with F.Inthelimitofvanishingforce. In the limit of vanishing force F \to 0,wemeasurethefollowingpower−laws:theanomalousexponentvanishesas, we measure the following power-laws : the anomalous exponent vanishes as \mu(F) \propto F^awith with a \simeq 0.6(insteadof (instead of a=1indimension in dimension d=1),andthecorrelationlengthdivergesas), and the correlation length diverges as \xi(F) \propto F^{-\nu}with with \nu \simeq 1.29(insteadof (instead of \nu=2indimension in dimension d=1).Ourmainconclusionisthusthatthedynamicsrenormalizesontoaneffectivedirectedtrapmodel,wherethetrapsarecharacterizedbyatypicallength). Our main conclusion is thus that the dynamics renormalizes onto an effective directed trap model, where the traps are characterized by a typical length \xi(F)alongthedirectionoftheforce,andbyatypicalbarrier along the direction of the force, and by a typical barrier 1/\mu(F).Thefactthatthesetrapsare′smaller′inlinearsizeandindepththanindimension. The fact that these traps are 'smaller' in linear size and in depth than in dimension d=1$, means that the particle uses the transverse direction to find lower barriers.Comment: 10 pages, 8 figures, v2=final versio

    On the Mott glass in the one-dimensional half-filled charge density waves

    Full text link
    We study the effect of impurity pinning on a one-dimensional half-filled electron system, which is expressed in terms of a phase Hamiltonian with the charge degree of freedom. Within the classical treatment, the pinned state is examined numerically. The Mott glass, which has been pointed out by Orignac et al. [Phys. Rev. Lett 83 (1999) 2378], appears in the intermediate region where the impurity potential competes with the commensurate potential. Such a state is verified by calculating the soliton formation energy, the local restoring force around the pinned state and the optical conductivity.Comment: 13 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 72 No.11 (2003

    Possible Glassiness in a Periodic Long-Range Josephson Array

    Full text link
    We present an analytic study of a periodic Josephson array with long-range interactions in a transverse magnetic field. We find that this system exhibits a first-order transition into a phase characterized by an extensive number of states separated by barriers that scale with the system size; the associated discontinuity is small in the limit of weak applied field, thus permitting an explicit analysis in this regime.Comment: 4 pages, 2 Postscript figures in a separate file

    Universal temperature dependence of the conductivity of a strongly disordered granular metal

    Full text link
    A disordered array of metal grains with large and random intergrain conductances is studied within the one-loop accuracy renormalization group approach. While at low level of disorder the dependence of conductivity on log T is nonuniversal (it depends on details of the array's geometry), for strong disorder this dependence is described by a universal nonlinear function, which depends only on the array's dimensionality. In two dimensions this function is found numerically. The dimensional crossover in granular films is discussed.Comment: 6 pages, 6 figures, submitted to JETP Letter

    Creep via dynamical functional renormalization group

    Full text link
    We study a D-dimensional interface driven in a disordered medium. We derive finite temperature and velocity functional renormalization group (FRG) equations, valid in a 4-D expansion. These equations allow in principle for a complete study of the the velocity versus applied force characteristics. We focus here on the creep regime at finite temperature and small velocity. We show how our FRG approach gives the form of the v-f characteristics in this regime, and in particular the creep exponent, obtained previously only through phenomenological scaling arguments.Comment: 4 pages, 3 figures, RevTe

    Monte-Carlo calculation of longitudinal and transverse resistivities in a model Type-II superconductor

    Full text link
    We study the effect of a transport current on the vortex-line lattice in isotropic type-II superconductors in the presence of strong thermal fluctuations by means of 'driven-diffusion' Monte Carlo simulations of a discretized London theory with finite magnetic penetration depth. We calculate the current-voltage (I-V) characteristics for various temperatures, for transverse as well as longitudinal currents I. From these characteristics, we estimate the linear resistivities R_xx=R_yy and R_zz and compare these with equilibrium results for the vortex-lattice structure factor and the helicity moduli. From this comparison a consistent picture arises, in which the melting of the flux-line lattice occurs in two stages for the system size considered. In the first stage of the melting, at a temperature T_m, the structure factor drops to zero and R_xx becomes finite. For a higher temperature T_z, the second stage takes place, in which the longitudinal superconducting coherence is lost, and R_zz becomes finite as well. We compare our results with related recent numerical work and experiments on cuprate superconductors.Comment: 4 pages, with eps figure

    Structure of Flux Line Lattices with Weak Disorder at Large Length Scales

    Full text link
    Dislocation-free decoration images containing up to 80,000 vortices have been obtained on high quality Bi2_{2}Sr2_{2}CaCu2_{2}O8+x_{8+x} superconducting single crystals. The observed flux line lattices are in the random manifold regime with a roughening exponent of 0.44 for length scales up to 80-100 lattice constants. At larger length scales, the data exhibit nonequilibrium features that persist for different cooling rates and field histories.Comment: 4 pages, 3 gif images, to appear in PRB rapid communicatio

    Fractional power-law susceptibility and specific heat in low temperature insulating state of o-TaS_{3}

    Full text link
    Measurements of the magnetic susceptibility and its anisotropy in the quasi-one-dimensional system o-TaS_{3} in its low-T charge density wave (CDW) ground state are reported. Both sets of data reveal below 40 K an extra paramagnetic contribution obeying a power-law temperature dependence \chi(T)=AT^{-0.7}. The fact that the extra term measured previously in specific heat in zero field, ascribed to low-energy CDW excitations, also follows a power law C_{LEE}(0,T)=CT^{0.3}, strongly revives the case of random exchange spin chains. Introduced impurities (0.5% Nb) only increase the amplitude C, but do not change essentially the exponent. Within the two-level system (TLS) model, we estimate from the amplitudes A and C that there is one TLS with a spin s=1/2 localized on the chain at the lattice site per cca 900 Ta atoms. We discuss the possibility that it is the charge frozen within a soliton-network below the glass transition T_{g}~40 K determined recently in this system.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
    • …
    corecore