4 research outputs found

    Boost-phase discrimination research

    Get PDF
    The final report describes the combined work of the Computational Chemistry and Aerothermodynamics branches within the Thermosciences Division at NASA Ames Research Center directed at understanding the signatures of shock-heated air. Considerable progress was made in determining accurate transition probabilities for the important band systems of NO that account for much of the emission in the ultraviolet region. Research carried out under this project showed that in order to reproduce the observed radiation from the bow shock region of missiles in their boost phase it is necessary to include the Burnett terms in the constituent equation, account for the non-Boltzmann energy distribution, correctly model the NO formation and rotational excitation process, and use accurate transition probabilities for the NO band systems. This work resulted in significant improvements in the computer code NEQAIR that models both the radiation and fluid dynamics in the shock region

    Progress in computing nozzle/plume flow fields

    Get PDF
    The long-term goal is to develop the capability to predict chemically-reacting, multi-stream nozzle and plume flow fields. Two basic Navier-Stokes solvers, including the widely used F-3D code, are upgraded to include several upwind difference schemes and portable chemistry packages. Current computational capabilities for solving equilibrium single-stream and multi-stream, frozen gas, and finite rate chemistry problems are described. A variety of complex nozzle and plume flows were computed. Solutions presented include axisymmetric plume flow for ideal and equilibrium air, 3-D NASP nozzle/afterbody flow, and an internal nozzle calculation comparing various finite-rate chemistry packages

    NASA's Information Power Grid: Large Scale Distributed Computing and Data Management

    No full text
    Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment
    corecore