112 research outputs found

    Comparison of four different treatment strategies in teeth with molar-incisor hypomineralization-related enamel breakdown–A retrospective cohort study

    Get PDF
    Background There is little information available on the longevity of non-invasive glass ionomer cement (GIC) and composite restorations as well as conventional composite and ceramic restorations placed on permanent teeth with enamel breakdowns due to molar-incisor hypomineralization (MIH). Aim To compare the longevity of the abovementioned treatment procedures. Design Of 377 identified MIH patients, 118 individuals received restorative treatment and were invited for clinical examination, including caries and MIH status. Finally, survival data from 204 MIH-related restorations placed on 127 teeth were retrospectively collected from 52 children, monitored between 2010 and 2018. Descriptive and explorative analyses were performed, including Kaplan-Meier estimators and the Cox regression model. Results The mean patient observation time was 42.9 months (SD = 35.1). The cumulative survival probabilities after 36 months—7.0% (GIC, N = 28), 29.9% (non-invasive composite restoration, N = 126), 76.2% (conventional composite restoration, N = 27) and 100.0% (ceramic restoration, N = 23)—differed significantly in the regression analysis. Conclusions Conventional restorations were associated with moderate-to-high survival rates in MIH teeth. In contrast, non-invasive composite restorations, which were predominately used in younger or less cooperative children, were linked to lower survival rates

    Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii

    Get PDF
    A specific signaling role for H2O2 in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H2O2 but also on light. In the dark, the induction of the reporter gene by H2O2 was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H2O2 from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H2O2 levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the catalase activity since it was prevented by 3-(3â€Č4â€Č-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase inhibitor, led to a higher induction of the reporter gene by H2O2 in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities. It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells from dark to light. This down-regulation apparently is necessary to maintain a certain level of H2O2 required to activate H2O2-dependent signaling pathways

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement.

    Get PDF
    BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.journal articleresearch support, non-u.s. gov't2016 Feb2015 10 26importe
    • 

    corecore