42 research outputs found

    Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders

    Full text link

    Upward Flame Spread Over Thin Solids in Partial Gravity

    No full text
    The effects of partial-gravity, reduced pressure, and sample width on upward flame spread over a thin cellulose fuel were studied experimentally and the results were compared to a numerical flame spread simulation. Fuel samples 1-cm, 2-cm, and 4-cm wide were burned in air at reduced pressures of 0.2 to 0.4 atmospheres in simulated gravity environments of 0.1-G, 0.16-G (Lunar), and 0.38-G (Martian) onboard the NASA KC-135 aircraft and in normal-gravity tests. Observed steady flame propagation speeds and pyrolysis lengths were approximately proportional to the gravity level. Flames spread more quickly and were longer with the wider samples and the variations with gravity and pressure increased with sample width. A numerical simulation of upward flame spread was developed including three-dimensional Navier-Stokes equations, one-step Arrhenius kinetics for the gas phase flame and for the solid surface decomposition, and a fuel-surface radiative loss. The model provides detailed structure of flame temperatures, the flow field interactions with the flame, and the solid fuel mass disappearance. The simulation agrees with experimental flame spread rates and their dependence on gravity level but predicts a wider flammable region than found by experiment. Some unique three-dimensional flame features are demonstrated in the model results

    The combined approach to query answering beyond the OWL 2 profiles.

    No full text
    Combined approaches have become a successful technique for CQ answering over ontologies. Existing algorithms, however, are restricted to the logics underpinning the OWL 2 profiles. Our goal is to make combined approaches applicable to a wider range of ontologies. We focus on RSA: a class of Horn ontologies that extends the profiles while ensuring tractability of standard reasoning. We show that CQ answering over RSA ontologies without role composition is feasible in NP. Our reasoning procedure generalises the combined approach for ELHO and DL-LiteR using an encoding of CQ answering into fact entailment w.r.t. a logic program with function symbols and stratified negation. Our results have significant practical implications since many out-of-profile Horn ontologies are RSA

    The combined approach to query answering beyond the OWL 2 profiles.

    No full text
    Combined approaches have become a successful technique for CQ answering over ontologies. Existing algorithms, however, are restricted to the logics underpinning the OWL 2 profiles. Our goal is to make combined approaches applicable to a wider range of ontologies. We focus on RSA: a class of Horn ontologies that extends the profiles while ensuring tractability of standard reasoning. We show that CQ answering over RSA ontologies without role composition is feasible in NP. Our reasoning procedure generalises the combined approach for ELHO and DL-LiteR using an encoding of CQ answering into fact entailment w.r.t. a logic program with function symbols and stratified negation. Our results have significant practical implications since many out-of-profile Horn ontologies are RSA

    Upward And Downward Flame Spreading And Extinction In Partial Gravity Environments

    No full text
    The premise of this research effort has been to begin exploring the gap in the literature between studies of material flammability and flame spread phenomena in normal-gravity and those conducted in the microgravity environment, with or without forced flows. From a fundamental point of view, flame spreading in upward (concurrent) buoyant flow is considerably different from concurrent forced flow. The flow accelerates throughout the length of the buoyant flame bringing the streamlines and the flame closer to the fuel surface and strengthening the interaction between the flame and fuel. Forced flows are diverted around the flame and away from the fuel surface, except where the flow might be constrained by a finite duct. The differences may be most clearly felt as the atmospheric conditions, viz. pressure or oxygen content, approach the flammability limit. From a more practical point of view, flame spreading and material flammability behavior have not been studied under the partial gravity conditions that are the natural state in space exploration destinations such as the Moon and Mars. This effort constitutes the beginning of the research needed to engineer fire safety provisions for such future missions. In this program we have performed partial-gravity experiments (from 0.1 to 1 g/g(sub Earth)) considering both upward and downward flame spread over thin solid fuels aboard the NASA KC-135 aircraft. In those tests, the atmospheric pressure and the fuel sample width were varied. Steady flame spread rates and approximate extinction boundaries were determined. Flame images were recorded using video cameras and two-dimensional fuel surface temperature distributions were determined using an IR camera. These results are available, and complement our earlier work in downward spread in partial gravity varying oxygen content. In conjunction with the experiment, three-dimensional models of flame spreading in buoyant flow have been developed. Some of the computed results on upward spreading have been presented. A derivative three-dimensional model of downward spreading has been developed. It is currently being used to evaluate the standard limiting oxygen index (LOI) measuring device and its potential performance in different gravity levels
    corecore