7 research outputs found

    FlexNFV: Flexible Network Service Chaining with Dynamic Scaling

    No full text

    An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images

    No full text
    Imbalanced learning is a common problem in remote sensing imagery-based land-use and land-cover classifications. Imbalanced learning can lead to a reduction in classification accuracy and even the omission of the minority class. In this paper, an impartial semi-supervised learning strategy based on extreme gradient boosting (ISS-XGB) is proposed to classify very high resolution (VHR) images with imbalanced data. ISS-XGB solves multi-class classification by using several semi-supervised classifiers. It first employs multi-group unlabeled data to eliminate the imbalance of training samples and then utilizes gradient boosting-based regression to simulate the target classes with positive and unlabeled samples. In this study, experiments were conducted on eight study areas with different imbalanced situations. The results showed that ISS-XGB provided a comparable but more stable performance than most commonly used classification approaches (i.e., random forest (RF), XGB, multilayer perceptron (MLP), and support vector machine (SVM)), positive and unlabeled learning (PU-Learning) methods (PU-BP and PU-SVM), and typical synthetic sample-based imbalanced learning methods. Especially under extremely imbalanced situations, ISS-XGB can provide high accuracy for the minority class without losing overall performance (the average overall accuracy achieves 85.92%). The proposed strategy has great potential in solving the imbalanced classification problems in remote sensing

    Efficiency of Extreme Gradient Boosting for Imbalanced Land Cover Classification Using an Extended Margin and Disagreement Performance

    No full text
    Imbalanced learning is a methodological challenge in remote sensing communities, especially in complex areas where the spectral similarity exists between land covers. Obtaining high-confidence classification results for imbalanced class issues is highly important in practice. In this paper, extreme gradient boosting (XGB), a novel tree-based ensemble system, is employed to classify the land cover types in Very-high resolution (VHR) images with imbalanced training data. We introduce an extended margin criterion and disagreement performance to evaluate the efficiency of XGB in imbalanced learning situations and examine the effect of minority class spectral separability on model performance. The results suggest that the uncertainty of XGB associated with correct classification is stable. The average probability-based margin of correct classification provided by XGB is 0.82, which is about 46.30% higher than that by random forest (RF) method (0.56). Moreover, the performance uncertainty of XGB is insensitive to spectral separability after the sample imbalance reached a certain level (minority:majority > 10:100). The impact of sample imbalance on the minority class is also related to its spectral separability, and XGB performs better than RF in terms of user accuracy for the minority class with imperfect separability. The disagreement components of XGB are better and more stable than RF with imbalanced samples, especially for complex areas with more types. In addition, appropriate sample imbalance helps to improve the trade-off between the recognition accuracy of XGB and the sample cost. According to our analysis, this margin-based uncertainty assessment and disagreement performance can help users identify the confidence level and error component in similar classification performance (overall, producer, and user accuracies)

    Nanohole structure as efficient antireflection layer for silicon solar cell fabricated by maskless laser annealing

    No full text
    In this paper, a uniform nanohole structure on silicon wafer is fabricated using the silver catalyst induced method. The optical properties of the silicon nanohole structure are studied systematically at different nanohole depths. The nanohole arrays demonstrate excellent antireflection property due to its sub-wavelength structure with a low reflection loss of 4% for incident light within the wavelength range of 300-1100 nm. The angular dependence of reflectivity is also investigated. The average reflection decreases at first and then increases as the incident light deviated from normal, with a very lower reflectivity of 0.83% at an incident angle of 20°. The suppressed reflection indicates a strong light trapping ability of the nanohole structure, and provides a low cost method to enhance light absorption and performance for the solar cell application

    Evaluating the Performance of Sentinel-2, Landsat 8 and Pleiades-1 in Mapping Mangrove Extent and Species

    No full text
    Mapping mangrove extent and species is important for understanding their response to environmental changes and for observing their integrity for providing goods and services. However, accurately mapping mangrove extent and species are ongoing challenges in remote sensing. The newly-launched and freely-available Sentinel-2 (S2) sensor offers a new opportunity for these challenges. This study presents the first study dedicated to the examination of the potential of original bands, spectral indices, and texture information of S2 in mapping mangrove extent and species in the first National Nature Reserve for mangroves in Dongzhaigang, China. To map mangrove extent and species, a three-level hierarchical structure based on the spatial structure of a mangrove ecosystem and geographic object-based image analysis is utilized and modified. During the experiments, to conquer the challenge of optimizing high-dimension and correlated feature space, the recursive feature elimination (RFE) algorithm is introduced. Finally, the selected features from RFE are employed in mangrove species discriminations, based on a random forest algorithm. The results are compared with those of Landsat 8 (L8) and Pleiades-1 (P1) data and show that S2 and L8 could accurately extract mangrove extent, but P1 obviously overestimated it. Regarding mangrove species community levels, the overall classification accuracy of S2 is 70.95%, which is lower than P1 imagery (78.57%) and slightly higher than L8 data (68.57%). Meanwhile, the former difference is statistically significant, and the latter is not. The dominant species is extracted basically in S2 and P1 imagery, but for the occasionally distributed K. candel and the pioneer and fringe mangrove A. marina, S2 performs poorly. Concerning L8, S2, and P1, there are eight (8/126), nine (9/218), and eight (8/73) features, respectively, that are the most important for mangrove species discriminations. The most important feature overall is the red-edge bands, followed by shortwave infrared, near infrared, blue, and other visible bands in turn. This study demonstrates that the S2 sensor can accurately map mangrove extent and basically discriminate mangrove species communities, but for the latter, one should be cautious due to the complexity of mangrove species
    corecore