18 research outputs found
Ablation experiments.
Computer-aided diagnosis techniques based on deep learning in skin cancer classification have disadvantages such as unbalanced datasets, redundant information in the extracted features and ignored interactions of partial features among different convolutional layers. In order to overcome these disadvantages, we propose a skin cancer classification model named EFFNet, which is based on feature fusion and random forests. Firstly, the model preprocesses the HAM10000 dataset to make each category of training set images balanced by image enhancement technology. Then, the pre-training weights of the EfficientNetV2 model on the ImageNet dataset are fine-tuned on the HAM10000 skin cancer dataset. After that, an improved hierarchical bilinear pooling is introduced to capture the interactions of some features between the layers and enhance the expressive ability of features. Finally, the fused features are passed into the random forests for classification prediction. The experimental results show that the accuracy, recall, precision and F1-score of the model reach 94.96%, 93.74%, 93.16% and 93.24% respectively. Compared with other models, the accuracy rate is improved to some extent and the highest accuracy rate can be increased by about 10%.</div
The confusion matrix of skin cancer classification model.
The confusion matrix of skin cancer classification model.</p
Evaluation indicators for each category of the model.
Evaluation indicators for each category of the model.</p
Classification accuracy of different projection dimensions on the HAM10000 dataset.
Classification accuracy of different projection dimensions on the HAM10000 dataset.</p
Modified EfficientNetV2-M model structure.
Computer-aided diagnosis techniques based on deep learning in skin cancer classification have disadvantages such as unbalanced datasets, redundant information in the extracted features and ignored interactions of partial features among different convolutional layers. In order to overcome these disadvantages, we propose a skin cancer classification model named EFFNet, which is based on feature fusion and random forests. Firstly, the model preprocesses the HAM10000 dataset to make each category of training set images balanced by image enhancement technology. Then, the pre-training weights of the EfficientNetV2 model on the ImageNet dataset are fine-tuned on the HAM10000 skin cancer dataset. After that, an improved hierarchical bilinear pooling is introduced to capture the interactions of some features between the layers and enhance the expressive ability of features. Finally, the fused features are passed into the random forests for classification prediction. The experimental results show that the accuracy, recall, precision and F1-score of the model reach 94.96%, 93.74%, 93.16% and 93.24% respectively. Compared with other models, the accuracy rate is improved to some extent and the highest accuracy rate can be increased by about 10%.</div
Distribution of different types of data in the dataset.
Distribution of different types of data in the dataset.</p
Comparison of cropped images.
(A) is the original image and (B) is the cropped image.</p
Overall structure of EFFNet.
Computer-aided diagnosis techniques based on deep learning in skin cancer classification have disadvantages such as unbalanced datasets, redundant information in the extracted features and ignored interactions of partial features among different convolutional layers. In order to overcome these disadvantages, we propose a skin cancer classification model named EFFNet, which is based on feature fusion and random forests. Firstly, the model preprocesses the HAM10000 dataset to make each category of training set images balanced by image enhancement technology. Then, the pre-training weights of the EfficientNetV2 model on the ImageNet dataset are fine-tuned on the HAM10000 skin cancer dataset. After that, an improved hierarchical bilinear pooling is introduced to capture the interactions of some features between the layers and enhance the expressive ability of features. Finally, the fused features are passed into the random forests for classification prediction. The experimental results show that the accuracy, recall, precision and F1-score of the model reach 94.96%, 93.74%, 93.16% and 93.24% respectively. Compared with other models, the accuracy rate is improved to some extent and the highest accuracy rate can be increased by about 10%.</div
Structure diagram of efficient channel attention mechanism.
Structure diagram of efficient channel attention mechanism.</p
Overall comparison of EFFNet with other state-of-the-art models on the test dataset.
Overall comparison of EFFNet with other state-of-the-art models on the test dataset.</p