106 research outputs found

    Design, characterization, and sensitivity of the supernova trigger system at Daya Bay

    Full text link
    Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.Comment: 8 pages, 6 figures, to be submitted to Astroparticle Physic

    Scalar Quantization as Sparse Least Square Optimization

    Full text link
    Quantization can be used to form new vectors/matrices with shared values close to the original. In recent years, the popularity of scalar quantization for value-sharing applications has been soaring as it has been found huge utilities in reducing the complexity of neural networks. Existing clustering-based quantization techniques, while being well-developed, have multiple drawbacks including the dependency of the random seed, empty or out-of-the-range clusters, and high time complexity for a large number of clusters. To overcome these problems, in this paper, the problem of scalar quantization is examined from a new perspective, namely sparse least square optimization. Specifically, inspired by the property of sparse least square regression, several quantization algorithms based on l1l_1 least square are proposed. In addition, similar schemes with l1+l2l_1 + l_2 and l0l_0 regularization are proposed. Furthermore, to compute quantization results with a given amount of values/clusters, this paper designed an iterative method and a clustering-based method, and both of them are built on sparse least square. The paper shows that the latter method is mathematically equivalent to an improved version of k-means clustering-based quantization algorithm, although the two algorithms originated from different intuitions. The algorithms proposed were tested with three types of data and their computational performances, including information loss, time consumption, and the distribution of the values of the sparse vectors, were compared and analyzed. The paper offers a new perspective to probe the area of quantization, and the algorithms proposed can outperform existing methods especially under some bit-width reduction scenarios, when the required post-quantization resolution (number of values) is not significantly lower than the original number

    A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma

    Get PDF
    Molecular profiling of lung cancer has become essential for prediction of an individual’s response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    The effect of adjuvant chemotherapy on survival in patients with residual nasopharyngeal carcinoma after undergoing concurrent chemoradiotherapy.

    No full text
    BACKGROUND:Guidelines from the U.S. National Comprehensive Cancer Network have recommended use of concurrent chemoradiotherapy (CCRT), followed by a 3-cycles combination of platinum and 5-fluorouracil chemotherapy as standard treatment for nasopharyngeal carcinoma (NPC). The benefits of CCRT for treatment of locally advanced NPC have been established. Whether platinum and 5-fluorouracil chemotherapy should be routinely added to locally advanced NPC after CCRT is still open to debate. Whether adjuvant chemotherapy provides an additional survival benefit for the subgroup of patients with residual nasopharyngeal carcinoma who have undergone CCRT is also unclear. This retrospective study was initiated to determine the survival benefit of adjuvant chemotherapy (AC) in residual NPC patients who have undergone concurrent chemoradiotherapy. METHODS:The retrospective study included 155 nasopharyngeal carcinoma patients who had local residual lesions after the platinum-based CCRT without or with AC. Kaplan-Meier analysis and the log-rank test were used to estimate overall survival (OS), failure-free survival (FFS), local relapse-free survival (LRFS) and distant metastasis-free survival (DMFS). RESULTS:Median follow-up was 47 months. Adjuvant cisplatin or nedaplatin plus 5-fluorouracil chemotherapy did not significantly improve 3-year OS, LRFS, FFS, and DMFS for patients with residual nasopharyngeal carcinoma after undergoing CCRT. The 3-year OS rates for the no-AC group and AC group were 71.6% and 73.7%, respectively (P= 0.44). The 3-year FFS rates for no-AC group and AC group were 57.5% and 66.9%, respectively ((P= 0.19). The 3-year LRFS rates for no-AC group and AC group were 84.7% and 87.9%, respectively ((P= 0.51). The 3-year DMFS rates for no-AC group and AC group were 71.4% and 77.4%, respectively ((P= 0.23). CONCLUSIONS:Since we did not find sufficient data to support significant survival in 3-year OS, LRFS, FFS, and DMFS, whether Adjuvant cisplatin or nedaplatin and 5-fluorouracil chemotherapy should be routinely added to residual nasopharyngeal carcinoma patients after undergoing CCRT remain uncertain

    Prognostic significance of tumor volume in locally recurrent nasopharyngeal carcinoma treated with salvage intensity-modulated radiotherapy.

    No full text
    INTRODUCTION:To evaluate the prognostic value of gross tumor volume (TV) in patients with locally recurrent, nonmetastatic nasopharyngeal carcinoma. METHODS:Between 2001 and 2012, 291 consecutive patients with locally recurrent, nonmetastatic nasopharyngeal carcinoma underwent salvage IMRT were retrospectively reviewed. The correlations between TV and recurrent T classification were analyzed. Survival analyses were performed. Receiver operating characteristic (ROC) curves were calculated to identify cut-off point of TV. The Akaike information criterion and Harrell's concordance index (c-index) were utilized to test the prognostic value. RESULTS:The median TV significantly increased with advancing recurrent T classification (P<0.001). The 5-year overall survival rate was 33.2% for the entire cohort. On multivariate analysis, TV was an independent negative prognostic factor for distant metastasis-free survival (hazard ratio =1.013, P =0.003), overall survival (hazard ratio = 1.015, P<0.001) and toxicity-related death (hazard ratio = 1.014, P<0.001). The 5-year overall survival rates were 63.1% and 20.8% for patients with a TV < 22 cm3 and TV ≥22 cm3, respectively (P < 0.001). In patient with TV <22 cm3, locoregional failure is the leading cause of death. In patients with TV≥22 cm3, distant metastasis rate is higher and occurred within short term after local recurrence; meanwhile, radiation-induced injuries became more common and led to half of deaths in this group. The Akaike information criterion and c-index analyses indicated that the predictive ability of recurrent T classification improved when combined with TV. CONCLUSIONS:Our data suggests TV is a significant prognostic factor for predicting the distant metastasis, overall survival and toxicity-related death of patients with locally recurrent, nonmetastatic nasopharyngeal carcinoma after salvage IMRT. TV should be considered when designing personalized salvage treatments for these patients. For patients with bulky local recurrent tumor, radiation may need to be de-emphasized in favor of systemic treatment or best supportive care
    • …
    corecore