203 research outputs found

    Interplay of charge and spin correlations in nickel perovskites

    Full text link
    Analyzing the motion of low--spin (s=1/2)(s=1/2) holes in a high--spin (S=1)(S=1) background, we derive a sort of generalized t--J Hamiltonian for the NiO2\rm NiO_2 planes of Sr--doped nickelates. In addition to the rather complex carrier--spin and spin--spin couplings we take into account the coupling of the doped holes to in--plane oxygen breathing modes by a Holstein--type interaction term. Because of strong magnetic confinement effects the holes are nearly entirely prelocalized and the electron--phonon coupling becomes much more effective in forming polarons than in the isostructural cuprates. In the light of recent experiments on La2xSrxNiO4\rm La_{2-x}Sr_xNiO_4 we discuss how the variety of the observed transport and charge/spin--ordering phenomena can be qualitatively understood in terms of our model Hamiltonian.Comment: 2 pages, LTpaper.sty, Proc. XXI Int. Conf. on Low Temp. Phys. Prague 9

    Chebyshev approach to quantum systems coupled to a bath

    Full text link
    We propose a new concept for the dynamics of a quantum bath, the Chebyshev space, and a new method based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that exactly represents the fermionic or bosonic bath degrees of freedom, without a discretization of the bath density of states. Relying on Chebyshev expansions the Chebyshev space representation of a bath has very favorable properties with respect to extremely precise and efficient calculations of groundstate properties, static and dynamical correlations, and time-evolution for a great variety of quantum systems. The aim of the present work is to introduce the Chebyshev space in detail and to demonstrate the capabilities of the Chebyshev space method. Although the central idea is derived in full generality the focus is on model systems coupled to fermionic baths. In particular we address quantum impurity problems, such as an impurity in a host or a bosonic impurity with a static barrier, and the motion of a wave packet on a chain coupled to leads. For the bosonic impurity, the phase transition from a delocalized electron to a localized polaron in arbitrary dimension is detected. For the wave packet on a chain, we show how the Chebyshev space method implements different boundary conditions, including transparent boundary conditions replacing infinite leads. Furthermore the self-consistent solution of the Holstein model in infinite dimension is calculated. With the examples we demonstrate how highly accurate results for system energies, correlation and spectral functions, and time-dependence of observables are obtained with modest computational effort.Comment: 18 pages, 13 figures, to appear in Phys. Rev.

    Spatiotemporal evolution of polaronic states in finite quantum systems

    Full text link
    We study the quantum dynamics of small polaron formation and polaron transport through finite quantum structures in the framework of the one-dimensional Holstein model with site-dependent potentials and interactions. Combining Lanczos diagonalization with Chebyshev moment expansion of the time evolution operator, we determine how different initial states, representing stationary ground states or injected wave packets, after an electron-phonon interaction quench, develop in real space and time. Thereby, the full quantum nature and dynamics of electrons and phonons is preserved. We find that the decay out of the initial state sensitively depends on the energy and momentum of the incoming particle, the electron-phonon coupling strength, and the phonon frequency, whereupon bound polaron-phonon excited states may emerge in the strong-coupling regime. The tunneling of a Holstein polaron through a quantum wall/dot is generally accompanied by strong phonon number fluctuations due to phonon emission and re-absorption processes.Comment: 13 pages, 15 figures, final versio

    Sparse polynomial space approach to dissipative quantum systems: Application to the sub-ohmic spin-boson model

    Full text link
    We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behaviour, and dissipative spin dynamics in the spin boson modelComment: 4 pages, 4 figures, revised version accepted for publication in PR

    DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model

    Full text link
    In order to clarify the physics of the crossover from a spin-density-wave (SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation exponents, the momentum distribution function, and various excitation gaps, we confirm that an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.Comment: revised versio
    corecore