11 research outputs found

    Fluctuations in active membranes

    Full text link
    Active contributions to fluctuations are a direct consequence of metabolic energy consumption in living cells. Such metabolic processes continuously create active forces, which deform the membrane to control motility, proliferation as well as homeostasis. Membrane fluctuations contain therefore valuable information on the nature of active forces, but classical analysis of membrane fluctuations has been primarily centered on purely thermal driving. This chapter provides an overview of relevant experimental and theoretical approaches to measure, analyze and model active membrane fluctuations. In the focus of the discussion remains the intrinsic problem that the sole fluctuation analysis may not be sufficient to separate active from thermal contributions, since the presence of activity may modify membrane mechanical properties themselves. By combining independent measurements of spontaneous fluctuations and mechanical response, it is possible to directly quantify time and energy-scales of the active contributions, allowing for a refinement of current theoretical descriptions of active membranes.Comment: 38 pages, 9 figures, book chapte

    Blood, Sphingosine-1-Phosphate and Lymphocyte Migration Dynamics in the Spleen

    No full text
    The spleen, the largest secondary lymphoid organ, has long been known to play important roles in immunity against blood-borne invaders. Yet how cells migrate within the spleen to ensure fast and effective responses is only now coming to light. Chemokines and oxysterols guide lymphocytes from sites of release at terminal arterioles into the lymphocyte-rich white pulp. Sphingosine-1-phosphate (S1P) and S1P-receptor-1 (S1PR1) promote lymphocyte egress from white to red pulp and back to circulation. Intravital two-photon microscopy has shown that marginal zone (MZ) B cells that are enriched between white and red pulps undergo continual oscillatory migration between the MZ and follicles, ferrying antigens. Cycles of G-protein-coupled receptor kinase-2 (GRK2) mediated S1PR1 desensitization and resensitization underlie this remarkable behavior. The findings discussed in this review have implications for understanding how splenic antibody and T-cell responses are mounted, how the immunosuppressant drug FTY720 (fingolimod) affects the spleen, and how cell shuttling behaviors contribute to immunity

    Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen.

    No full text
    The spleen, the largest secondary lymphoid organ, has long been known to play important roles in immunity against blood-borne invaders. Yet how cells migrate within the spleen to ensure fast and effective responses is only now coming to light. Chemokines and oxysterols guide lymphocytes from sites of release at terminal arterioles into the lymphocyte-rich white pulp. Sphingosine-1-phosphate (S1P) and S1P-receptor-1 (S1PR1) promote lymphocyte egress from white to red pulp and back to circulation. Intravital two-photon microscopy has shown that marginal zone (MZ) B cells that are enriched between white and red pulps undergo continual oscillatory migration between the MZ and follicles, ferrying antigens. Cycles of G-protein-coupled receptor kinase-2 (GRK2) mediated S1PR1 desensitization and resensitization underlie this remarkable behavior. The findings discussed in this review have implications for understanding how splenic antibody and T-cell responses are mounted, how the immunosuppressant drug FTY720 (fingolimod) affects the spleen, and how cell shuttling behaviors contribute to immunity

    Endocytosis and signalling: intertwining molecular networks

    No full text
    corecore