8 research outputs found

    Investigation of trace amine receptors in the cardiovascular systems

    Get PDF
    Trace amines (TAs), including p-phenylethylamine (p-PEA), tyramine and octopamine are structurally and functionally related to biogenic amines such as catecholamines and serotonin and to amphetamines. They are present in trace levels in the nervous system and in chocolate, cheese and wine. TAs are usually regarded as indirectly-acting sympathomimetic amines (ISAs) exerting vasoconstriction via a-adrenoceptors. However, they also stimulate trace amine-associated receptors (TAARs), of which only TAAR1 and TAAR4 are sensitive to TAs. The aim of the thesis was to examine whether vasoconstriction by TAs in blood vessels is via ISA or TA mechanisms. TAs caused concentration-related and endothelium-independent contractions in rat isolated aortic rings in the presence of prazosin (ai-adrenoceptor antagonist), cocaine (catecholamine uptake inhibitor), ICI-118,551-adrenoceptor antagonist) and pargyline (MAO A and B inhibitor). The persistent and inhibitor-independent contractions suggest that mechanisms other than ISA and a- and p- adrenoceptor stimulation are involved, possibly TAARs. Differences in the profile of vasoconstrictor activities to a range of TAs were identified in rat and guinea-pig aorta, suggesting species variations in receptor distribution. Tyramine was identified as a partial agonist in isolated rat aorta and an antagonist of other TAs in this tissue. Finally, the presence of TAAR1 mRNA and protein was demonstrated for the first time in rat aorta by RT-PCR and Western blotting, respectively. Most information about TAs relates to studies which have been done on the brain, or cloned receptors expressed in transfected cells. This study of different TAs and structurally related derivatives in aortic tissues has expanded the knowledge of the vasoconstrictor effects of TAs in isolated tissues. The molecular biological confirmation of the presence of TAAR1 and the pharmacological findings regarding the effects of TAs in rat aortic rings might explain their hypertensive effects and their role in coronary heart disease and migraine headache

    Effects of dietary amines on the gut and its vasculature

    Get PDF
    Trace amines, including tyramine and β-phenylethylamine (β-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called ‘friendly’ bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and β-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation

    Identification of trace-amine-associated receptors (TAAR) in the rat aorta and their role in vasoconstriction by beta-phenylethylamine

    No full text
    Trace amines including tyramine and β-phenylethylamine (β-PEA) increase blood pressure and cause vasoconstriction which is attributed to indirect sympathomimetic actions. However, there is evidence that they may also have non-sympathomimetic mechanisms. This study examined whether β-PEA causes vasoconstriction of rat aorta by a sympathomimetic action or through the recently described trace-amine-associated receptors (TAAR). Concentration–response curves (CRCs) for β-PEA were constructed either cumulatively or non-cumulatively in rat isolated aortic rings. TAAR-1 and TAAR-4 protein expression was determined in rat aorta by Western blotting and TAAR-1 mRNA by reverse transcriptase polymerase chain reaction (RT-PCR). β-PEA caused concentration-related constriction of rat aorta. The contractions were unaffected by endothelium removal or the nitric oxide synthase inhibitor, NwN-nitro-l-arginine methyl ester (l-NAME, 100 μM) or the cyclooxygenase inhibitor, indomethacin (10 μM). Non-cumulative CRCs showed greater contractions and sensitivity to β-PEA than cumulative. The α1-adrenoceptor antagonist, prazosin, failed to inhibit either curve. The β-adrenoceptor antagonist, propranolol, the adrenergic neuronal transport inhibitor, cocaine, and the monoamine oxidase inhibitor, pargyline, also failed to alter the CRC. In the combined presence of prazosin, cocaine, pargyline, and the selective β2-adrenoceptor antagonist, ICI-118,551, the trace amine contractile potency order was tryptamine > β-PEA > octopamine > d-amphetamine > tyramine. Western blotting and RT-PCR revealed the presence of TAAR-1 in rat aorta, but TAAR-4 was poorly expressed. Vasoconstriction of rat aorta by β-PEA appears not to be an indirect sympathomimetic action. The presence of TAAR-1 suggests that vasoconstriction may be via these receptors; however, the potency order differed from that reported for transfected cells expressing rat TAAR-1

    Functional evaluation of the receptors mediating vasoconstriction of rat aorta by trace amines and amphetamines

    No full text
    Trace amines including β-phenylethylamine (β-PEA) and amphetamines classically exert pharmacological actions via indirect sympathomimetic mechanisms. However, there is evidence for other mechanisms and this study explores the receptors mediating vasoconstriction in rat aorta. β-PEA, d-amphetamine, MDMA, cathinone and methylphenidate caused concentration-dependent contractions of rat isolated aortic rings which were unaffected by prazosin (1 μM), ICI-118,551 (1 μM), cocaine (10 μM) and pargyline (10 μM), to inhibit α1- and β2-adrenoceptors, neuronal transport and monoamine oxidase (MAO), respectively. Octopamine concentration–response curves, however, were shifted to the right. In the presence of the inhibitors, the rate of onset of octopamine contractions was slowed. Lineweaver–Burk analysis of the kinetics of the response generated different KM values for octopamine in the absence (2.35×10−6 M) and presence (6.09×10−5 M) of inhibitors, indicating mediation by different receptors. Tryptamine-induced vasoconstriction also resisted blockade by adrenergic inhibitors and the 5-HT1A, 1B, 1D and 5-HT2A receptor antagonists, methiothepin (50 nM) and ketanserin (30 nM), respectively. Trace amines and amphetamines therefore exert vasoconstriction independently of adrenoceptors, neuronal transport and 5-HT receptor activation. There was no evidence of tachyphylaxis or cross-tachyphylaxis of the vasoconstriction to these amines. Tyramine was a partial agonist and in its presence, β-PEA, d-amphetamine and octopamine were antagonised indicating that they all act through a common receptor for which tyramine serves as an antagonist. We conclude that the vasoconstriction is via TAAR-1, because of structural similarities between amines, ability to stimulate recombinant trace amine-associated receptor 1 (TAAR-1) and the presence of TAAR-1 in rat aorta

    The flux of ultra-high-energy cosmic rays along the supergalactic plane measured at the Pierre Auger Observatory

    No full text
    International audienceUltra-high-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 31 December 2022, with a total exposure of 135,000 km^2 sr yr. The strongest indication for an excess that we find, with a post-trial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable exposure, our results in those regions are in good agreement with the expectations from an isotropic distribution

    Large-scale cosmic ray anisotropies with 19 years of data from the Pierre Auger Observatory

    No full text
    International audienceResults are presented for the measurement of large-scale anisotropies in the arrival directions of ultra-high-energy cosmic rays detected at the Pierre Auger Observatory during 19 years of operation, prior to AugerPrime, the upgrade of the Observatory. The 3D dipole amplitude and direction are reconstructed above 44\,EeV in four energy bins. Besides the established dipolar anisotropy in right ascension above 88\,EeV, the Fourier amplitude of the 88 to 1616\,EeV energy bin is now also above the 5σ5\sigma discovery level. No time variation of the dipole moment above 88\,EeV is found, setting an upper limit to the rate of change of such variations of 0.3%0.3\% per year at the 95%95\% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.030.03\,EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.60.6\,EeV

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore