15 research outputs found

    Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride from Low-Energy Phonon Modes

    Get PDF
    Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature. This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material. In this work, we investigate the origins for the mechanical decoupling. Improved sample preparation enabled a reduced background and a 70-fold decrease of spectral diffusion which was so far the major drawback of defect center in hBN and allowed us to reveal a gap in the electron-phonon spectral density for low phonon frequencies. This decoupling from phonons persists at room temperature and explains the observed Fourier Transform limited lines up to 300K. Furthermore, we investigate the dipole emission directionality and show a preferred photon emission through the side of the hBN flakes supporting the claim for an out-of-plane distortion of the defect center. Our work lays the foundation to a deeper understanding of the underlying physics for the persistence of Fourier-Transform limit lines up to room temperature. It furthermore provides a description on how to identify the mechanically isolated emitter within the large number of defect centers in hBN. Therefore, it paves the way for quantum optics applications with defect centers in hBN at room temperature.Comment: 9 pages, 5 figure

    Modeling flexibility in energy systems : comparison of power sector models based on simplified test cases

    Get PDF
    Model-based scenario analyses of future energy systems often come to deviating results and conclusions when different models are used. This may be caused by heterogeneous input data and by inherent differences in model formulations. The representation of technologies for the conversion, storage, use, and transport of energy is usually stylized in comprehensive system models in order to limit the size of the mathematical problem, and may substantially differ between models. This paper presents a systematic comparison of nine power sector models with sector coupling. We analyze the impact of differences in the representation of technologies, optimization approaches, and further model features on model outcomes. The comparison uses fully harmonized input data and highly simplified system configurations to isolate and quantify model-specific effects. We identify structural differences in terms of the optimization approach between the models. Furthermore, we find substantial differences in technology modeling primarily for battery electric vehicles, reservoir hydro power, power transmission, and demand response. These depend largely on the specific focus of the models. In model analyses where these technologies are a relevant factor, it is therefore important to be aware of potential effects of the chosen modeling approach. For the detailed analysis of the effect of individual differences in technology modeling and model features, the chosen approach of highly simplified test cases is suitable, as it allows to isolate the effects of model-specific differences on results. However, it strongly limits the model's degrees of freedom, which reduces its suitability for the evaluation of fundamentally different modeling approaches

    High-purity single photons obtained with moderate-NA optics from SiV center in nanodiamonds on a bullseye antenna

    No full text
    International audienceAbstract Coherent exchange of single photons is at the heart of applied quantum optics. The negatively-charged silicon vacancy center in diamond is among most promising sources for coherent single photons. Its large Debye–Waller factor, short lifetime and extraordinary spectral stability is unique in the field of solid-state single photon sources. However, the excitation and detection of individual centers requires high numerical aperture (NA) optics which, combined with the need for cryogenic temperatures, puts technical overhead on experimental realizations. Here, we investigate a hybrid quantum photonics platform based on silicon-vacancy center in nanodiamonds and metallic bullseye antenna to realize a coherent single-photon resource that operates efficiently down to low NA optics with an inherent resistance to misalignment

    Modellexperiment zur hoch aufgelösten Untersuchung des zukĂŒnftigen Lastausgleichs im Stromsystem – Ein szenariobasierter Vergleich von Modellierungen

    Get PDF
    Motivation und zentrale Fragestellung Um Strategien fĂŒr die zukĂŒnftige Entwicklung von Energieversorgungssystemen zu untersuchen, wurden zuletzt zahlreiche Energiesystemmodelle entwickelt [1], die Technologien zur Umwandlung, Speicherung, Nutzung und zum Transport von Energie stark abstrahiert abbilden. Modellbasierte Szenariostudien kommen in der Regel zu unterschiedlichen Ergebnissen und Schlussfolgerungen. Dies liegt an unterschiedlichen Eingangsdaten, aber auch an den verwendeten Modellen. Dieser Beitrag stellt einige Ergebnisse des FlexMex-Projekts vor, das sich mit dem detaillierten Vergleich von hochaufgelösten Stromsystemmodellen und insbesondere mit der BerĂŒcksichtigung von FlexibilitĂ€t und Sektorenkopplung beschĂ€ftigt. Das Modellexperiment umfasst neun Modelle, fĂŒr die die Auswirkungen unterschiedlicher Modellierungsansatz und Technologiedarstellung auf die Modellergebnisse umfassend analysiert werden. Methodische Vorgangsweise Der hier vorgestellte erste Teil des Modellexperiments konzentriert sich auf eine detaillierte Analyse der Auswirkungen von Unterschieden in den ModellierungsansĂ€tzen und der Implementierung einzelner Technologien. Um Wechselwirkungen zwischen verschiedenen Modellierungsunterschieden zu reduzieren, werden die betrachteten FlexibilitĂ€tsoptionen jeweils einzeln in einem stark vereinfachten System mit elf Modellregionen analysiert. Dieses System besteht aus Energienachfrage, fluktuierender Erzeugung und den zu analysierenden Ausgleichsoptionen. Um datenbedingte Unterschiede auszuschließen, basieren alle ModelllĂ€ufe auf einem harmonisierten Eingangsdatensatz, der alle techno-ökonomischen Annahmen, installierte KapazitĂ€ten und stĂŒndliche Zeitreihen umfasst und weitestgehend aus [2] ĂŒbernommen werden konnte. Um die Vergleichbarkeit der Ergebnisse zu erhöhen, handelt es sich bei den neun zu FlexMex beitragenden Modellen um optimierende, stĂŒndlich aufgelöste Stromsystemmodelle mit Sektorenkopplung. Allerdings unterscheiden sich die Modelle erheblich in Umfang und Detaillierungstiefe des abgebildeten Technologieportfolios. Die Auswertung des Experiments basiert in erster Linie auf dem Betriebsverhalten der Lastausgleichsoptionen. Als Kennzahl wird die Jahresauslastung verwendet, es werden aber auch Vergleiche auf Stundenbasis durchgefĂŒhrt. Neben der Nutzung von Lastausgleichsoptionen werden auch die Stromversorgungskosten und die jĂ€hrlichen CO2-Emissionen verglichen. Basierend auf der detaillierten Kenntnis der Modelleigenschaften und Datenanforderungen wurden standardisierte, maschinenlesbare Eingabe- und AusgabedatenblĂ€tter entwickelt. Anschließend ermöglicht eine Python-basierte Auswerteroutine das automatisierte Einlesen der Optimierungsergebnisse und die Erstellung von Indikatorgraphiken. Ergebnisse und Schlussfolgerungen Über die technologiespezifischen UntersuchungsfĂ€lle hinweg zeigt sich eine große Bandbreite unterschiedlicher Trends. WĂ€hrend es bei einigen Technologien nur geringe Unterschiede zwischen den Modellergebnissen gibt, die jeweils durch spezifische Modelleigenschaften verursacht werden, zeigen andere Technologien grĂ¶ĂŸere Abweichungen, die sich in den meisten FĂ€llen auf unterschiedliche Modellformulierungen zurĂŒckfĂŒhren lassen. Die Ergebnisunterschiede sind meist gut zu den Modellunterschieden zuordbar, allerdings konnten trotz stark reduzierter UntersuchungsfĂ€lle Überlagerungseffekte nicht vollstĂ€ndig ausgeschlossen werden. Signifikante Modellunterschiede zeigen sich insbesondere in der Abbildung von regelbaren Kraftwerken, Batteriefahrzeugen und Lastmanagement. Das Modellexperiment zeigt außerdem, dass sich die Ergebnisse von Modellen mit grundlegend unterschiedlichem Ansatz (quadratische Programmierung, rollierender Horizont) nicht systematisch signifikant unterscheiden. Dies deutet darauf hin, dass die gewĂ€hlte Methode der vereinfachten FĂ€lle nicht gĂ€nzlich fĂŒr ihre Bewertung geeignet ist. Im Hinblick auf Best Practices fĂŒr Modellexperimente konnte abgeleitet werden, dass die vorgelagerte Erfassung von Modellunterschieden die Analyse erleichtert, aber nicht ersetzt. Auch war eine Vermeidung von Fehlinterpretationen von Eingabe- und Ergebnisdaten trotz intensivem Austausch nicht vollstĂ€ndig möglich. Daraus folgt, dass eine hĂ€ufige Wiederholung von ModelllĂ€ufen notwendig ist, was durch kurze Rechenzeiten und Automatisierung bei der Übertragung und Analyse von Daten erleichtert wird. Abschließend wurde gezeigt, dass harmonisierte Eingangsdaten und reduzierte AnwendungsfĂ€lle die gezielte Analyse von Modellunterschieden ermöglichen. Literatur [1] H.-K. RingkjĂžb, P.M. Haugen und I.M. Solbrekke: A review of modelling tools for energy and electricity systems with large shares of variable renewables, Renewable and Sustainable Energy Reviews 96, 2018 [2] H. C. Gils, T. Pregger, F. Flachsbarth, M. Jentsch und C. Dierstein: Comparison of spatially and temporally resolved energy system models with a focus on Germany's future power supply, Applied Energy 225, 201

    Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity

    No full text
    Hybrid quantum photonics combines classical photonics with quantum emitters in a postprocessing step. It facilitates to link ideal quantum light sources to optimized photonic platforms. Optical cavities enable to harness the Purcell-effect boosting the device efficiency. Here, we postprocess a free-standing, crossed-waveguide photonic crystal cavity based on Si3N4 with SiV− center in nanodiamonds. We develop a routine that optimizes the overlap with the cavity electric field utilizing atomic force microscope (AFM) nanomanipulation to attain control of spatial and dipole alignment. Temperature tuning further gives access to the spectral emitter-cavity overlap. After a few optimization cycles, we resolve the fine-structure of individual SiV− centers and achieve a Purcell enhancement of more than 4 on individual optical transitions, meaning that four out of five spontaneously emitted photons are channeled into the photonic device. Our work opens up new avenues to construct efficient quantum photonic devices
    corecore