539 research outputs found

    On the chemical biology of the nitrite/sulfide interaction

    Get PDF
    The authors are grateful to the Susanne-Bunnenberg-Stiftung of the Düsseldorf Heart Center (to MK), the COST action BM1005 (European Network on Gasotransmitters), and the Faculty of Medicine, University of Southampton (to MF) for financial support.Sulfide (H2S/HS−) has been demonstrated to exert an astounding breadth of biological effects, some of which resemble those of nitric oxide (NO). While the chemistry, biochemistry and potential pathophysiology of the cross-talk between sulfide and NO have received considerable attention lately, a comparable assessment of the potential biological implications of an interaction between nitrite and sulfide is lacking. This is surprising inasmuch as nitrite is not only a known bioactive oxidation product of NO, but also efficiently converted to S-nitrosothiols in vivo; the latter have been shown to rapidly react with sulfide in vitro, leading to formation of S/N-hybrid species including thionitrite (SNO−) and nitrosopersulfide (SSNO−). Moreover, nitrite is used as a potent remedy against sulfide poisoning in the clinic. The chemistry of interaction between nitrite and sulfide or related bioactive metabolites including polysulfides and elemental sulfur has been extensively studied in the past, yet much of this information appears to have been forgotten. In this review, we focus on the potential chemical biology of the interaction between nitrite and sulfide or sulfane sulfur molecules, calling attention to the fundamental chemical properties and reactivities of either species and discuss their possible contribution to the biology, pharmacology and toxicology of both nitrite and sulfide.Publisher PDFPeer reviewe

    Perioperative Oxidative Stress: The Unseen Enemy.

    Get PDF
    Reactive oxygen species (ROS) are essential for cellular signaling and physiological function. An imbalance between ROS production and antioxidant protection results in a state of oxidative stress (OS), which is associated with perturbations in reduction/oxidation (redox) regulation, cellular dysfunction, organ failure, and disease. The pathophysiology of OS is closely interlinked with inflammation, mitochondrial dysfunction, and, in the case of surgery, ischemia/reperfusion injury (IRI). Perioperative OS is a complex response that involves patient, surgical, and anesthetic factors. The magnitude of tissue injury inflicted by the surgery affects the degree of OS, and both duration and nature of the anesthetic procedure applied can modify this. Moreover, the interindividual susceptibility to the impact of OS is likely to be highly variable and potentially linked to underlying comorbidities. The pathological link between OS and postoperative complications remains unclear, in part due to the complexities of measuring ROS- and OS-mediated damage. Exogenous antioxidant use and exercise have been shown to modulate OS and may have potential as countermeasures to improve postoperative recovery. A better understanding of the underlying mechanisms of OS, redox signaling, and regulation can provide an opportunity for patient-specific phenotyping and development of targeted interventions to reduce the disruption that surgery can cause to our physiology. Anesthesiologists are in a unique position to deliver countermeasures to OS and improve physiological resilience. To shy away from a process so fundamental to the welfare of these patients would be foolhardy and negligent, thus calling for an improved understanding of this complex facet of human biology

    Nitrosopersulfide (SSNO(-)) targets the Keap-1/Nrf2 redox system.

    No full text
    Nitric oxide (NO), hydrogen sulfide and polysulfides have been proposed to contribute to redox signaling by activating the Keap-1/Nrf2 stress response system. Nitrosopersulfide (SSNO(-)) recently emerged as a bioactive product of the chemical interaction of NO or nitrosothiols with sulfide; upon decomposition it generates polysulfides and free NO, triggering the activation of soluble guanylate cyclase, inducing blood vessel relaxation in vitro and lowering blood pressure in vivo. Whether SSNO(-) itself interacts with the Keap-1/Nrf2 system is unknown. We therefore sought to investigate the ability of SSNO(-) to activate Nrf2-dependent processes in human vascular endothelial cells, and to compare the pharmacological effects of SSNO(-) with those of its precursors NO and sulfide at multiple levels of target engagement. We here demonstrate that SSNO(-) strongly increases Nrf2 nuclear levels, Nrf2-binding activity and transactivation activity, thereby increasing mRNA expression of Hmox-1, the gene encoding for heme oxygenase 1, without adversely affecting cell viability. Under all conditions, SSNO(-) appeared to be more potent than its parent compounds, NO and sulfide. SSNO(-)-induced Nrf2 transactivation activity was abrogated by either NO scavenging with cPTIO or inhibition of thiol sulfuration by high concentrations of cysteine, implying a role for both persulfides/polysulfides and NO in SSNO(-) mediated Nrf2 activation. Taken together, our studies demonstrate that the Keap-1/Nrf2 redox system is a biological target of SSNO(-), enriching the portfolio of bioactivity of this vasoactive molecule to also engage in the regulation of redox signaling processes. The latter suggests a possible role as messenger and/or mediator in cellular sensing and adaptations processes

    On the chemical biology of the nitrite/sulfide interaction

    No full text
    Sulfide (H2S/HS(-)) has been demonstrated to exert an astounding breadth of biological effects, some of which resemble those of nitric oxide (NO). While the chemistry, biochemistry and potential (patho)physiology of the cross-talk between sulfide and NO has received considerable attention lately, a comparable assessment of the potential biological implications of an interaction between nitrite and sulfide is lacking. This is surprising inasmuch as nitrite is not only a known bioactive oxidation product of NO, but also efficiently converted to S-nitrosothiols in vivo; the latter have been shown to rapidly react with sulfide in vitro, leading to formation of S/N-hybrid species including thionitrite (SNO(-)) and nitrosopersulfide (SSNO(-)). Moreover, nitrite is used as a potent remedy against sulfide poisoning in the clinic. The chemistry of interaction between nitrite and sulfide or related bioactive metabolites including polysulfides and elemental sulfur has been extensively studied in the past, yet much of this information appears to have been forgotten. In this review, we focus on the potential chemical biology of the interaction between nitrite and sulfide or sulfane sulfur molecules, calling attention to the fundamental chemical properties and reactivity of either species and discuss its possible contribution to the biology, pharmacology and toxicology of both nitrite and sulfide

    Cephalosporin-3’-diazeniumdiolate NO-donor prodrug PYRRO-C3D enhances azithromycin susceptibility of non-typeable Haemophilus influenzae biofilms

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objectives: PYRRO-C3D is a cephalosporin-3-diazeniumdiolate nitric oxide (NO)-donor prodrug designed to selectively deliver NO to bacterial infection sites. The objective of this study was to assess the activity of PYRRO-C3D against non-typeable Haemophilus influenzae (NTHi) biofilms and examine the role of NO in reducing biofilm-associated antibiotic tolerance. Methods: The activity of PYRRO-C3D on in vitro NTHi biofilms was assessed through CFU enumeration and confocal microscopy. NO release measurements were performed using an ISO-NO probe. NTHi biofilms grown on primary ciliated respiratory epithelia at an air-liquid interface were used to investigate the effects of PYRRO-C3D in the presence of host tissue. Label-free LC/MS proteomic analyses were performed to identify differentially expressed proteins following NO treatment. Results: PYRRO-C3D specifically released NO in the presence of NTHi, while no evidence of spontaneous NO release was observed when the compound was exposed to primary epithelial cells. NTHi lacking β-lactamase activity failed to trigger NO release. Treatment significantly increased the susceptibility of in vitro NTHi biofilms to azithromycin, causing a log-fold reduction in viability (p<0.05) relative to azithromycin alone. The response was more pronounced for biofilms grown on primary respiratory epithelia, where a 2-log reduction was observed (p<0.01). Label-free proteomics showed that NO increased expression of sixteen proteins involved in metabolic and transcriptional/translational functions. Conclusions: NO release from PYRRO-C3D enhances the efficacy of azithromycin against NTHi biofilms, putatively via modulation of NTHi metabolic activity. Adjunctive therapy with NO mediated through PYRRO-C3D represents a promising approach for reducing biofilm associated antibiotic tolerance
    corecore