2 research outputs found

    The Effect of Psychomotor Performance, Cerebral and Arterial Blood Saturation Between African-American and Caucasian Males Before, During and After Normobaric Hypoxic Exercise

    Get PDF
    International Journal of Exercise Science 10(5): 655-665, 2017. To further elucidate physiological and cognitive performance differences between African-American (AA) and Caucasian individuals (CAU) before, during or after hypoxic and normoxic exercise. Twelve college aged (18-25) apparently healthy African-American (six volunteers) and Caucasian (six subjects) males took part in two trials consisting of normobaric normoxia and normobaric hypoxia (12% oxygen). Each subject cycled at 50% of their altitude adjusted VO2max (-26% of normoxia VO2max) for one hour after a two-hour baseline. Subjects were monitored for cerebral and arterial O2 saturation, as well as the Trail Making Test A and B (TMT) psychomotor performance. Arterial saturation proved to be significantly higher in AA (86.0±4.7) compared to CAU (79.5±4.8) during the first 60 minutes of exposure to hypoxia at rest (p=0.039), but not during exercise. However, cerebral oxygenation to the left frontal lobe was decreased near the conclusion and in 30 minutes after normoxic exercise. TMT B data revealed that CAU (79±12.7) had faster scores than the AA subjects (98±25.1) at all time points and was significantly different at the 115-minute time point of the hypoxic trial (p=0.024). The data suggests that before, during and after normobaric normoxia and hypoxia trial there is a differential response between AA and CAU in regards to arterial and cerebral oxygenation, as well as psychomotor tests

    Ingestion of oxygenated water enhances lactate clearance kinetics in trained runners

    Full text link
    Abstract Background Drinks with higher dissolved oxygen concentrations have in recent times gained popularity as a potential ergogenic aid, despite a lack of evidence regarding their efficacy. The aim of this study was to assess effects of ingestion of an oxygen supplement (OS) on exercise performance and post-exercise recovery in a group of trained runners. Methods Trained male runners (n = 25, mean ± SD; age 23 ± 6 years, mass 70 ± 9 kg, BMI 21.9 ± 2.7 kg.m−2 VO2max 64 ± 6mL.kg−1.min−1), completed a randomised double blinded, crossover study to assess the effect of ingestion of OS solution on exercise performance and recovery. Trials consisted of a 30min rest period, 5min warm-up, a 5000m treadmill time-trial, and a 30min passive recovery. Participants ingested 6x15mL of either OS or a taste matched placebo during the trials (3 during the rest phase, 1 during exercise and 2 during the recovery). Muscle tissue O2 saturation was measured via near infrared spectroscopy. Blood lactate concentrations were measured prior to, mid-way and directly after the finish of the 5000m time trials and every 3-min during the post-exercise recovery. Results Ingestion of OS did not improve exercise performance. No significant differences were observed for muscle tissue O2 saturation at any time-points. However, lactate clearance was significantly improved during recovery in the OS trials. Both AUC (109 ± 32 vs. 123 ± 38 mmol.min, P < 0.05, d = 0.40) and lactate half-life (λ) (1127 ± 272 vs. 1223 ± 334 s, P < 0.05, d = 0.32) were significantly reduced. Conclusions Despite no evidence of improved exercise performance, ingestion of OS did enhance post-exercise recovery via increased lactate clearance
    corecore