6 research outputs found

    Boundary conditions in the Unruh problem

    Get PDF
    We have analyzed the Unruh problem in the frame of quantum field theory and have shown that the Unruh quantization scheme is valid in the double Rindler wedge rather than in Minkowski spacetime. The double Rindler wedge is composed of two disjoint regions (RR- and LL-wedges of Minkowski spacetime) which are causally separated from each other. Moreover the Unruh construction implies existence of boundary condition at the common edge of RR- and LL-wedges in Minkowski spacetime. Such boundary condition may be interpreted as a topological obstacle which gives rise to a superselection rule prohibiting any correlations between rr- and ll- Unruh particles. Thus the part of the field from the LL-wedge in no way can influence a Rindler observer living in the RR-wedge and therefore elimination of the invisible "left" degrees of freedom will take no effect for him. Hence averaging over states of the field in one wedge can not lead to thermalization of the state in the other. This result is proved both in the standard and algebraic formulations of quantum field theory and we conclude that principles of quantum field theory does not give any grounds for existence of the "Unruh effect".Comment: 31 pages,1 figur

    Diamonds's Temperature: Unruh effect for bounded trajectories and thermal time hypothesis

    Full text link
    We study the Unruh effect for an observer with a finite lifetime, using the thermal time hypothesis. The thermal time hypothesis maintains that: (i) time is the physical quantity determined by the flow defined by a state over an observable algebra, and (ii) when this flow is proportional to a geometric flow in spacetime, temperature is the ratio between flow parameter and proper time. An eternal accelerated Unruh observer has access to the local algebra associated to a Rindler wedge. The flow defined by the Minkowski vacuum of a field theory over this algebra is proportional to a flow in spacetime and the associated temperature is the Unruh temperature. An observer with a finite lifetime has access to the local observable algebra associated to a finite spacetime region called a "diamond". The flow defined by the Minkowski vacuum of a (four dimensional, conformally invariant) quantum field theory over this algebra is also proportional to a flow in spacetime. The associated temperature generalizes the Unruh temperature to finite lifetime observers. Furthermore, this temperature does not vanish even in the limit in which the acceleration is zero. The temperature associated to an inertial observer with lifetime T, which we denote as "diamond's temperature", is 2hbar/(pi k_b T).This temperature is related to the fact that a finite lifetime observer does not have access to all the degrees of freedom of the quantum field theory.Comment: One reference correcte
    corecore