22 research outputs found

    A Novel Strategy Involved Anti-Oxidative Defense: The Conversion of NADH into NADPH by a Metabolic Network

    Get PDF
    The reduced nicotinamide adenine dinucleotide phosphate (NADPH) is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH), a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC), malic enzyme (ME), malate dehydrogenase (MDH), malate synthase (MS), and isocitrate lyase (ICL) that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK) and the upregulation of pyruvate kinase (PK) ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant

    Metabolomic Profiling of Drug Responses in Acute Myeloid Leukaemia Cell Lines

    Get PDF
    Combined bezafibrate (BEZ) and medroxyprogesterone acetate (MPA) exert unexpected antileukaemic activities against acute myeloid leukaemia (AML) and these activities are associated with the generation of reactive oxygen species (ROS) within the tumor cells. Although the generation of ROS by these drugs is supported by preceding studies including our own, the interrelationship between the cellular effects of the drugs and ROS generation is not well understood. Here we report the use of NMR metabolomic profiling to further study the effect of BEZ and MPA on three AML cell lines and to shed light on the underlying mechanism of action. For this we focused on drug effects induced during the initial 24 hours of treatment prior to the onset of overt cellular responses and examined these in the context of basal differences in metabolic profiles between the cell lines. Despite their ultimately profound cellular effects, the early changes in metabolic profiles engendered by these drugs were less pronounced than the constitutive metabolic differences between cell types. Nonetheless, drug treatments engendered common metabolic changes, most markedly in the response to the combination of BEZ and MPA. These responses included changes to TCA cycle intermediates consistent with recently identified chemical actions of ROS. Notable amongst these was the conversion of α-ketoglutarate to succinate which was recapitulated by the treatment of cell extracts with exogenous hydrogen peroxide. These findings indicate that the actions of combined BEZ and MPA against AML cells are indeed mediated downstream of the generation of ROS rather than some hitherto unsuspected mechanism. Moreover, our findings demonstrate that metabolite profiles represent highly sensitive markers for genomic differences between cells and their responses to external stimuli. This opens new perspectives to use metabolic profiling as a tool to study the rational redeployment of drugs in new disease settings

    The effect of cell-phone radiation on rabbits: Lymphocyte enzyme-activity data

    No full text
    The effect of a GSM 900/1800 mobile phone, which is a widespread source of electromagnetic radiation of the microwave frequency in the environment, on rabbits was studied at power densities of 5–7 μW/cm2. The biological effect was recorded by a sensitive method for the detection of the physiological regulation of enzyme activity inside lymphocytes in blood smears. Succinate dehydrogenase, which is the most powerful energy-supply enzyme in mitochondria, and lactate dehydrogenase, which is an enzyme of glycolysis, were measured. The lactate dehydrogenase to succinate dehydrogenase activity ratio was also calculated as an analog of the Warburg effect, which demonstrates the relationship between glycolysis and respiration. After 60 min of mobile-phone exposure each day for 11 days at a moderate dose, the emitted radiation induced a threefold increase in succinate dehydrogenase activity and a twofold decrease in lactate dehydrogenase activity. As a result, the lactate dehydrogenase/succinate dehydrogenase activity ratio falls from 15 to 5, thus indicating that respiration is predominant over glycolysis. The changes develop already after the first exposure and reach a maximum in 4 days. The predominance of respiration is usually considered as a beneficial state of an organism. However, continuous activation of respiration by mobile phone exposure may cause damage to the normal restorative processes that are supported by glycolysis during periods of rest. © 2016, Pleiades Publishing, Inc

    The effect of cell-phone radiation on rabbits: Lymphocyte enzyme-activity data

    No full text
    The effect of a GSM 900/1800 mobile phone, which is a widespread source of electromagnetic radiation of the microwave frequency in the environment, on rabbits was studied at power densities of 5–7 μW/cm2. The biological effect was recorded by a sensitive method for the detection of the physiological regulation of enzyme activity inside lymphocytes in blood smears. Succinate dehydrogenase, which is the most powerful energy-supply enzyme in mitochondria, and lactate dehydrogenase, which is an enzyme of glycolysis, were measured. The lactate dehydrogenase to succinate dehydrogenase activity ratio was also calculated as an analog of the Warburg effect, which demonstrates the relationship between glycolysis and respiration. After 60 min of mobile-phone exposure each day for 11 days at a moderate dose, the emitted radiation induced a threefold increase in succinate dehydrogenase activity and a twofold decrease in lactate dehydrogenase activity. As a result, the lactate dehydrogenase/succinate dehydrogenase activity ratio falls from 15 to 5, thus indicating that respiration is predominant over glycolysis. The changes develop already after the first exposure and reach a maximum in 4 days. The predominance of respiration is usually considered as a beneficial state of an organism. However, continuous activation of respiration by mobile phone exposure may cause damage to the normal restorative processes that are supported by glycolysis during periods of rest. © 2016, Pleiades Publishing, Inc
    corecore